Refinar búsqueda
Resultados 3261-3270 de 4,033
Health risk assessment from contaminated foodstuffs: a field study in chromite mining-affected areas northern Pakistan
2016
Nawab, Javed | Li, Gang | K̲h̲ān, Sardār | Sher, Hassan | Aamir, Muhammad | Shamshad, Isha | Khan, Anwarzeb | Khan, Muhammad Amjad
This study aimed to investigate the potential health risk associated with toxic metals in contaminated foodstuffs (fruits, vegetables, and cereals) collected from various agriculture fields present in chromite mining-affected areas of mafic and ultramafic terrains (northern Pakistan). The concentrations of Cr, Ni, Zn, Cd, and Pb were quantified in both soil and food samples. The soil samples were highly contaminated with Cr (320 mg/kg), Ni (108 mg/kg), and Cd (2.55 mg/kg), which exceeded their respective safe limits set by FAO/WHO. Heavy metal concentrations in soil were found in the order of Cr>Ni>Pb>Zn>Cd and showed significantly (p < 0.001) higher concentrations as compared to reference soil. The integrated pollution load index (PLI) value was observed greater than three indicating high level of contamination in the study area. The concentrations of Cr (1.80–6.99 mg/kg) and Cd (0.21–0.90 mg/kg) in foodstuffs exceeded their safe limits, while Zn, Pb, and Ni concentrations were observed within their safe limits. In all foodstuffs, the selected heavy metal concentrations were accumulated significantly (p < 0.001) higher as compared to the reference, while some heavy metals were observed higher but not significant like Zn in pear, persimmon, white mulberry, and date-plum; Cd in pear, fig and white mulberry; and Pb in walnut, fig, and pumpkin. The health risk assessment revealed no potential risk for both adults and children for the majority of heavy metals, except Cd, which showed health risk index (HRI) >1 for children and can pose potential health threats for local inhabitants. Graphical Abstract Heavy metals released from chromite mining lead to soil and foodstuff contamination and human health risk
Mostrar más [+] Menos [-]Mercury bioaccumulation by Suillus bovinus mushroom and probable dietary intake with the mushroom meal
2016
Saba, Martyna | Falandysz, Jerzy | Nnorom, Innocent C.
This paper reports the results of the study of the efficiency of accumulation and distribution of mercury (Hg) in the fruiting bodies of fungus Suillus bovinus and the probable dietary intake of Hg and the potential health risk. Fungal fruiting bodies and soil materials were collected from 13 background areas in the northern part of Poland between 1993 and 2013. Mercury in the caps of fruiting bodies varied from 0.10 ± 0.06 to 0.79 ± 0.40 mg kg⁻¹ dry biomass and in the stipes from 0.083 ± 0.028 to 0.51 ± 0.22 mg kg⁻¹ dry biomass. The mean values of cap to stipe Hg content quotient varied from 1.3 ± 0.2 to 2.6 ± 0.6. The Hg content in the upper 0–10 cm layer of soil substrate varied from 0.015 ± 0.004 to 0.031 ± 0.019 mg kg⁻¹ dry biomass. S. bovinus could be considered as an efficient accumulator of Hg, at least from low level polluted soils, and the values of Hg bioconcentration factor (BCF) varied from 6.4 ± 2.2 to 45 ± 20 for caps and from 3.8 ± 1.4 to 29 ± 11 for stipes. A conventional meal (300 g) portion of S. bovinus foraged from background areas provides Hg dose far below the provisionally tolerable weekly intake or recommended reference dose set for this element by authorities. An examination of published data on Hg in fruiting bodies of fungi genus Suillus showed low contamination of specimens foraged from background areas. Also reviewed are published data on Hg in fungi genus Suillus collected worldwide.
Mostrar más [+] Menos [-]Reducing hazardous heavy metal ions using mangium bark waste
2016
Khabibi, Jauhar | Syafii, Wasrin | Sari, Rita Kartika
The objective of this study was to evaluate the characteristics of mangium bark and its biosorbent ability to reduce heavy metal ions in standard solutions and wastewater and to assess changes in bark characteristics after heavy metal absorption. The experiments were conducted to determine heavy metal absorption from solutions of heavy metals alone and in mixtures as well as from wastewater. The results show that mangium bark can absorb heavy metals. Absorption percentages and capacities from single heavy metal solutions showed that Cu²⁺ > Ni²⁺ > Pb²⁺ > Hg²⁺, while those from mixture solutions showed that Hg²⁺ > Cu²⁺ > Pb²⁺ > Ni²⁺. Wastewater from gold mining only contained Cu, with an absorption percentage and capacity of 42.87 % and 0.75 mg/g, respectively. The highest absorption percentage and capacity of 92.77 % and 5.18 mg/g, respectively, were found for Hg²⁺ in a mixture solution and Cu²⁺ in single-metal solution. The Cu²⁺ absorption process in a single-metal solution changed the biosorbent characteristics of the mangium bark, yielding a decreased crystalline fraction; changed transmittance on hydroxyl, carboxyl, and carbonyl groups; and increased the presence of Cu. In conclusion, mangium bark biosorbent can reduce hazardous heavy metal ions in both standard solutions and wastewater.
Mostrar más [+] Menos [-]Biomarkers assessment in the peacock blenny Salaria pavo exposed to cadmium
2016
Naïja, Azza | Marchand, Justine | Kestemont, Patrick | Haouas, Zohra | Blust, Ronny | Chénais, Benoit | Helal, Ahmed Noureddine
Cadmium (Cd) is one of the most toxic metals and is widely distributed in freshwater and marine environments. It has received much attention from a toxicological perspective. The aim of this study was to assess the effect of Cd in the peacock blenny Salaria pavo, a species of the family of blennies that was used as bioindicator of water pollution. We performed a sublethal contamination of fish to 2 mg CdCl₂ L⁻¹ during 1, 4, 10, and 15 days. Cd accumulation was measured in gills and liver and displayed a significant increase of its concentration throughout the experiment, with slightly higher levels in the liver, except after 4 days. Partial-length cDNA of mt1, mt2, mnsod, cuznsod, cat, and gpx were characterized. Results from mRNA expression levels displayed an up-regulation of mt2 and mnsod. Biomarker activities were determined in gills and liver. In gills, data displayed an inhibition of EROD and GST activities. Cd exposure significantly increased GPx activities but did not affect CAT levels throughout the experiment. No LPO induction was observed in gills of exposed fish. Regarding the liver, the activity of all enzymes and MDA levels increased significantly from the beginning of the experiment except EROD that increased after 15 days of contamination only. At the histological level, fish exhibited pathological symptoms in gills and liver with a predominance of circulatory disturbances in gills and regressive changes in the liver. Our results displayed that peacock blennies are able to survive Cd toxicity due to various physiological adaptation mechanisms.
Mostrar más [+] Menos [-]Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways
2016
Bu, Lingjun | Zhou, Shiqing | Shi, Zhou | Deng, Lin | Li, Guangchao | Yi, Qihang | Gao, Naiyun
The degradation kinetics and mechanism of the antiepileptic drug oxcarbazepine (OXC) by UV-activated persulfate oxidation were investigated in this study. Results showed that UV/persulfate (UV/PS) process appeared to be more effective in degrading OXC than UV or PS alone. The OXC degradation exhibited a pseudo-first order kinetics pattern and the degradation rate constants (k ₒbₛ) were affected by initial OXC concentration, PS dosage, initial pH, and humic acid concentration to different degrees. It was found that low initial OXC concentration, high persulfate dosage, and initial pH enhanced the OXC degradation. Additionally, the presence of humic acid in the solution could greatly inhibit the degradation of OXC. Moreover, hydroxyl radical (OH•) and sulfate radical (SO₄ ⁻••) were identified to be responsible for OXC degradation and SO₄ ⁻• made the predominant contribution in this study. Finally, major intermediate products were identified and a preliminary degradation pathway was proposed. Results demonstrated that UV/PS system is a potential technology to control the water pollution caused by emerging contaminants such as OXC.
Mostrar más [+] Menos [-]Diazinon, an organophosphate pesticide, induces oxidative stress and genotoxicity in cells deriving from large intestine
2016
Boussabbeh, Manel | Ben Salem, Intidhar | Hamdi, Mohamed | Ben Fradj, Salsabil | Abid-Essefi, Salwa | Bacha, Hassen
Diazinon (DZ) (O,O-diethyl-O-[2-isopropyl-6-methyl-4-pyrimidinyl]phosphorothioate) is an organophosphate pesticide which is extensively used to control household insects and fruit and vegetable crops. The exposure to this pesticide has been linked to the development of the serious problem in several experimental animals. The contamination of food by DZ may increase its danger to humans. The aim of this study was to investigate the toxic effect of DZ on intestine using an in vitro model (HCT116). Therefore, we evaluated the cell viability, elucidated the generation of free radicals, measured the mitochondrial membrane potential, and valued DNA fragmentation. Our results showed that DZ is cytotoxic to HCT116. It causes oxidative damage through the generation of free radicals and induces lipid peroxidation and DNA fragmentation. We also demonstrated that such effects can be responsible for DZ-induced apoptosis.
Mostrar más [+] Menos [-]A review on bisphenol A occurrences, health effects and treatment process via membrane technology for drinking water
2016
Muhamad, Mimi Suliza | Salim, Mohd Razman | Lau, Woei Jye | Yusop, Zulkifli
Massive utilization of bisphenol A (BPA) in the industrial production of polycarbonate plastics has led to the occurrence of this compound (at μg/L to ng/L level) in the water treatment plant. Nowadays, the presence of BPA in drinking water sources is a major concern among society because BPA is one of the endocrine disruption compounds (EDCs) that can cause hazard to human health even at extremely low concentration level. Parallel to these issues, membrane technology has emerged as the most feasible treatment process to eliminate this recalcitrant contaminant via physical separation mechanism. This paper reviews the occurrences and effects of BPA toward living organisms as well as the application of membrane technology for their removal in water treatment plant. The potential applications of using polymeric membranes for BPA removal are also discussed. Literature revealed that modifying membrane surface using blending approach is the simple yet effective method to improve membrane properties with respect to BPA removal without compromising water permeability. The regeneration process helps in maintaining the performances of membrane at desired level. The application of large-scale membrane process in treatment plant shows the feasibility of the technology for removing BPA and possible future prospect in water treatment process.
Mostrar más [+] Menos [-]Enhanced nutrient removal from municipal wastewater assisted by mixotrophic microalgal cultivation using glycerol
2016
Gupta, Prabuddha L. | Choi, Hee Jeong | Lee, Seung-Mok
In a present study, nutrient removal from municipal wastewater by Chlorella vulgaris and Nannochloropsis oculata was investigated by using mixotrophic cultivation with glycerol (0 to 5 g/L). Performance parameters were assessed by estimating the removal of total nitrogen, total phosphorus, chemical oxygen demand (COD), biomass growth, chlorophyll content, lipid yield, and fatty acids. With the addition of 2 g/L glycerol, a maximum biomass productivity of 56 mg/L/day was achieved in the mixotrophic culture of C. vulgaris within 12 days. The mixotrophic culture showed a 30-fold increase in biomass productivity compared to the wastewater without any glycerol. However, the highest total nitrogen removal (80.62 %), total phosphate removal (60.72 %), and COD removal (96.3 %) was observed in the N. oculata culture supplemented with 3, 5, and 1 g/L glycerol, respectively. These results suggest that mixotrophic cultivation using glycerol offers great potential in the production of renewable biomass, waste water treatment, and consequent production of high-value microalgal oil. Graphical Abstract Simultaneous biomass production and nutrient removal using microalgae cultivated in wastewater supplemented with glycerol
Mostrar más [+] Menos [-]Characterizing the compositional variation of dissolved organic matter over hydrophobicity and polarity using fluorescence spectra combined with principal component analysis and two-dimensional correlation technique
2016
Su, Ben-Sheng | Qu, Zhen | He, Xiao-Song | Song, Ying-Hao | Jia, Li-Min
Dissolved organic matter (DOM) obtained from three leachates with different landfill ages was fractionated, and its compositional variation based on hydrophobicity and polarity was characterized by synchronous fluorescence spectra combined with principal component analysis (PCA) and two-dimensional correlation technique. The results showed that the bulk DOM and its fractions were comprised of tryosine-, tryptophan-, fulvic-, and humic-like substances. Tyrosine-like matter was dominant in the young leachate DOM and its fractions, while tryptophan-, fulvic-, and humic-like substances were the main components in the intermediate and old leachate DOMs and their fractions. Tryosine-, tryptophan-, fulvic-, and humic-like substances varied concurrently with the hydrophobicity and polarity. However, the change ratio of these substances was different for the three leachates. Tyrosine-like matter, humic-like materials, and fulvic-like substances were the most sensitive to the hydrophobicity and polarity in the young, intermediate, and old leachates, respectively. Such an integrated approach jointly enhances the characterization of the hydrophobicity- and polarity-dependent DOM fractions and provides a promising way to elucidate the environmental behaviors of different DOM species.
Mostrar más [+] Menos [-]Structural benefits of bisphenol S and its analogs resulting in their high sorption on carbon nanotubes and graphite
2016
Guo, Huiying | Li, Hao | Liang, Ni | Chen, Fangyuan | Liao, Shaohua | Zhang, Di | Wu, Min | Pan, Bo
Bisphenol S (BPS), a new bisphenol analog, is considered to be a potential replacement for bisphenol A (BPA), which has gained concern because of its potentially adverse health impacts. Therefore, studies are needed to investigate the environmental fate and risks of this compound. In this study, the adsorption of BPS and four structural analogs on multi-walled carbon nanotubes (MWCNTs) and graphite (GP) were investigated. When solid-phase concentrations were normalized by the surface areas, oxygen-containing functional groups on the absorbents showed a positive impact on phenol sorption but inhibited the sorption of chemicals with two benzene rings. Among BPS analogs, diphenyl sulfone showed the lowest sorption when hydrophobic effects were ruled out. Chemicals with a butterfly structure, formed between the two benzene rings, showed consistently high sorption on MWCNTs, independent of the substituted electron-donating or accepting functional groups. This study emphasizes the importance of chemical conformation on organic, contaminant sorption on engineered, carbonaceous materials.
Mostrar más [+] Menos [-]