Refinar búsqueda
Resultados 361-370 de 5,098
Long-term dim light during nighttime changes activity patterns and space use in experimental small mammal populations
2018
Hoffmann, Julia | Palme, Rupert | Eccard, Jana Anja
Artificial light at night (ALAN) is spreading worldwide and thereby is increasingly interfering with natural dark-light cycles. Meanwhile, effects of very low intensities of light pollution on animals have rarely been investigated. We explored the effects of low intensity ALAN over seven months in eight experimental bank vole (Myodes glareolus) populations in large grassland enclosures over winter and early breeding season, using LED garden lamps. Initial populations consisted of eight individuals (32 animals per hectare) in enclosures with or without ALAN. We found that bank voles under ALAN experienced changes in daily activity patterns and space use behavior, measured by automated radiotelemetry. There were no differences in survival and body mass, measured with live trapping, and none in levels of fecal glucocorticoid metabolites. Voles in the ALAN treatment showed higher activity at night during half moon, and had larger day ranges during new moon. Thus, even low levels of light pollution as experienced in remote areas or by sky glow can lead to changes in animal behavior and could have consequences for species interactions.
Mostrar más [+] Menos [-]Potential transfer of organic pollutants from littoral plastics debris to the marine environment
2018
León, Víctor M. | García, Inés | González, Emilia | Samper, Raquel | Fernández-González, Verónica | Muniategui-Lorenzo, Soledad
Plastic polymers act as passive samplers in air system and concentrate hydrophobic organic contaminants by sorption or specific interactions, which can be transported to other systems such as the marine environment. In this study plastic debris was sampled in the surrounding area of a Mediterranean lagoon in order to determine the concentration of persistent and emerging organic contaminants. More specifically, desorption of 91 regulated and emerging organic contaminants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorinated pesticides, current-use pesticides, personal care products, other pesticides and plastic additives) was characterized for the first 24 h from different polymers to seawater and the remaining content of these contaminants was also extracted by ultrasonic extraction with methanol. All samples were analyzed by Stir Bar Sorptive Extraction coupled to GC/MS. A significant fraction of sorbed contaminants in polymers was desorbed in the first 24 h, particularly for triazines and organophosphorus pesticides due to their lower hydrophobicity than other considered analytes. The remaining contaminants contained in plastics can be also transferred to seawater, sediments or biota. Considering 24 h desorbed fraction plus the remaining methanol extracted fraction, the highest transfer levels corresponded to personal care products, plastic additives, current-use pesticides and PAHs. This is the first study to show the relevance of the transport of organic contaminants on plastic debris from littoral areas to the marine environment.
Mostrar más [+] Menos [-]SLC6A19 is a novel putative gene, induced by dioxins via AhR in human hepatoma HepG2 cells
2018
Tian, Wenjing | Fu, Hualing | Xu, Tuan | Xu, Sherry Li | Guo, Zhiling | Tian, Jijing | Tao, Wuqun | Xie, Heidi Qunhui | Zhao, Bin
The aryl hydrocarbon receptor (AhR) plays an important role in mediating dioxins toxicity. Currently, genes of P450 families are major research interests in studies on AhR-mediated gene alterations caused by dioxins. Genes related to other metabolic pathways or processes may be also responsive to dioxin exposures. Amino acid transporter B0AT1 (encoded by SLC6A19) plays a decisive role in neutral amino acid transport which is present in kidney, intestine and liver. However, effects of dioxins on its expression are still unknown. In the present study, we focused on the effects of dioxin and dioxin-like compounds on SLC6A19 expression in HepG2 cells. We identified SLC6A19 as a novel putative target gene of AhR activation in HepG2 cells. 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) increased the expression of SLC6A19 in time- and concentration-dependent manners. Using AhR antagonist CH223191 and/or siRNA assays, we demonstrated that certain AhR agonists upregulated SLC6A19 expression via AhR, including TCDD, 1,2,3,7,8-pentachlorodibenzo-p-dioxin (1,2,3,7,8-PeCDD), 2,3,4,7,8- pentachlorodibenzofuran (2,3,4,7,8-PeCDF) and PCB126. In addition, the expression of B0AT1 was also significantly induced by TCDD in HepG2 cells. Our study suggested that dioxins might affect the transcription and translation of SLC6A19 in HepG2 cells, which might be a novel putative gene to assess dioxins' toxicity in amino acid transport and metabolism in liver.
Mostrar más [+] Menos [-]Distribution and partitioning of polybrominated diphenyl ethers in sediments from the Pearl River Delta and Guiyu, South China
2018
Huang, Youda | Zhang, Dainan | Yang, Yu | Zeng, Xiangying | Ran, Yong
Polybrominated diphenyl ethers (PBDEs) were investigated by GC–NCI–MS in sediments collected from the Pearl River Delta (PRD) and Guiyu town, South China. The concentrations of ∑₃₉PBDEs and BDE 209 were in the ranges of 0.31–38.9 ng g⁻¹ and 12.2–488 ng g⁻¹ in the PRD, and 2.57–21,207 ng g⁻¹ and 7.02–66,573 ng g⁻¹ in Guiyu, respectively. The levels of PBDEs in Dongjiang River (DJ), Zhujiang River (ZJ), and Beijiang River (BJ), and Guiyu (GY) followed the order: GY > DJ > ZJ > BJ. The very high PBDE concentration (87,779 ng g⁻¹) was detected at G1 sediment in Guiyu compared with those in sediments from other regions around the world. The PBDE mixtures detected were mainly comprised of penta-, octa-, and deca-BDEs, in which deca-BDE was the dominant constituent. The abundant congeners, excluding BDE-209, were BDE-47, BDE-99, and BDE-183, suggesting the diverse use of commercial products containing these congeners in this region. The concentrations of major congeners were significantly correlated with total organic carbon (TOC) contents (p < .01). A good regression between the logarithmic TOC-normalized BDE average concentrations and their log Kₒw confirmed that the sorption of PBDEs on sediment organic matter governed their spatial distribution, transport, and fate in the sediments. Furthermore, risk quotients (RQs) derived from concentrations of PBDEs in sediments from our study may pose high ecological risks to exposure of benthic organisms.
Mostrar más [+] Menos [-]Are there fitness costs of adaptive pyrethroid resistance in the amphipod, Hyalella azteca?
2018
Heim, Jennifer R. | Weston, Donald P. | Major, Kaley | Poynton, Helen | Huff Hartz, Kara E. | Lydy, Michael J.
Pyrethroid-resistant Hyalella azteca with voltage-gated sodium channel mutations have been identified at multiple locations throughout California. In December 2013, H. azteca were collected from Mosher Slough in Stockton, CA, USA, a site with reported pyrethroid (primarily bifenthrin and cyfluthrin) sediment concentrations approximately twice the 10-d LC50 for laboratory-cultured H. azteca. These H. azteca were shipped to Southern Illinois University Carbondale and have been maintained in pyrethroid-free culture since collection. Even after 22 months in culture, resistant animals had approximately 53 times higher tolerance to permethrin than non-resistant laboratory-cultured H. azteca. Resistant animals held in culture also lacked the wild-type allele at the L925 locus, and had non-synonymous substitutions that resulted in either a leucine-isoleucine or leucine-valine substitution. Additionally, animals collected from the same site nearly three years later were again resistant to the pyrethroid permethrin. When resistant animals were compared to non-resistant animals, they showed lower reproductive capacity, lower upper thermal tolerance, and the data suggested greater sensitivity to, 4, 4′-dichlorodiphenyltrichloroethane (DDT), copper (II) sulfate, and sodium chloride. Further testing of the greater heat and sodium chloride sensitivity of the resistant animals showed these effects to be unrelated to clade association. Fitness costs associated with resistance to pyrethroids are well documented in pest species (including mosquitoes, peach-potato aphids, and codling moths) and we believe that H. azteca collected from Mosher Slough also have fitness costs associated with the developed resistance.
Mostrar más [+] Menos [-]Reduction in CO2 emissions in RoRo/Pax ports equipped with automatic mooring systems
2018
Díaz-Ruiz-Navamuel, Emma | Ortega Piris, Andrés | Pérez-Labajos, Carlos A.
Faced with the unavoidable reality of the emission of pollutant gases by vessels both while sailing and when performing in-port manoeuvres, the international community has devised an extensive set of rules to limit greenhouse gas emissions and the emission of other pollutants which are bad for our health. In order to make these reductions in the emissions, the areas addressed are the engine regime or speed control, the quality of the fuel used, the state of conservation of the vessel and its hull or the time taken to perform the manoeuvres of mooring and unmooring. One factor which is having a strong influence on this last aspect is the installation in commercial ports of Automatic Mooring Systems using suction cups (AMS). These devices, which help to reduce considerably the time required to perform the mooring and unmooring manoeuvres, allow the times taken in operations for making steady a vessel to land and of releasing it to sail away to be reduced from some tens of minutes to a few seconds. The aim of this work is to verify the effect of the AMS on the emission of pollutant gases in the surroundings of the installations devoted to Ro-Ro/Pax vessel traffic. In particular, will focus on the CO2 emissions produced by vessels during mooring operations using two different calculation methodologies (EPA and ENTEC), first when using traditional mooring methods as a means of securing the vessel to the dock and second when using only the AMS, to finally carry out a comparison of the results. Will conclude with a discussion on the values of the reduction in emissions obtained and the advantages of installing AMS in commercial ports. In the RoRo/Pax terminals in which the AMS is installed and operating, a reduction in CO2 emissions of 97% has been estimated.
Mostrar más [+] Menos [-]Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal
2018
Catarino, Ana I. | Macchia, Valeria | Sanderson, William G. | Thompson, Richard C. | Henry, Theodore B.
Microplastics (MPs) are the most numerous debris reported in marine environments and assessment of the amounts of MPs that accumulate in wild organisms is necessary for risk assessment. Our objective was to assess MP contamination in mussels collected around the coast of Scotland (UK) to identify characteristics of MPs and to evaluate risk of human exposure to MPs via ingestion of mussels. We deployed caged mussels (Mytilus edulis) in an urbanised estuary (Edinburgh, UK) to assess seasonal changes in plastic pollution, and collected mussels (Mytilus spp and subtidal Modiolus modiolus) from eight sampling stations around Scotland to enumerate MP types at different locations. We determined the potential exposure of humans to household dust fibres during a meal to compare with amounts of MPs present in edible mussels. The mean number of MPs in M. modiolus was 0.086 ± 0.031 (SE, n = 6)/g ww (3.5 ± 1.29 (SE) per mussel). In Mytilus spp, the mean number of MPs/g ww was 3.0 ± 0.9 (SE, n = 36) (3.2 ± 0.52 (SE) per mussel), but weight dependent. The visual accuracy of plastic fibres identification was estimated to be between 48 and 50%, using Nile Red staining and FT-IR methodologies, respectively, halving the observed amounts of MPs in wild mussels. We observed an allometric relationship between the number of MPs and the mussels wet weight. Our predictions of MPs ingestion by humans via consumption of mussels is 123 MP particles/y/capita in the UK and can go up to 4620 particles/y/capita in countries with a higher shellfish consumption. By comparison, the risk of plastic ingestion via mussel consumption is minimal when compared to fibre exposure during a meal via dust fallout in a household (13,731–68,415 particles/Y/capita).
Mostrar más [+] Menos [-]Water contamination by endocrine disruptors: Impacts, microbiological aspects and trends for environmental protection
2018
Vilela, Caren Leite Spindola | Bassin, João Paulo | Peixoto, Raquel Silva
Hormone active agents constitute a dangerous class of pollutants. Among them, those agents that mimic the action of estrogens on target cells and are part of the group of endocrine-disruptor compounds (EDCs) are termed estrogenic EDCs, the main focus of this review. Exposure to these compounds causes a number of negative effects, including breast cancer, infertility and animal hermaphroditism. However, especially in underdeveloped countries, limited efforts have been made to warn people about this serious issue, explain the methods of minimizing exposure, and develop feasible and efficient mitigation strategies at different levels and in various environments. For instance, the use of bioremediation processes capable of transforming EDCs into environmentally friendly compounds has been little explored. A wide diversity of estrogen-degrading microorganisms could be used to develop such technologies, which include bioremediation processes for EDCs that could be implemented in biological filters for the post-treatment of wastewater effluent. This review describes problems associated with EDCs, primarily estrogenic EDCs, including exposure as well as the present status of understanding and the effects of natural and synthetic hormones and estrogenic EDCs on living organisms. We also describe potential biotechnological strategies for EDC biodegradation, and suggest novel treatment approaches for minimizing the persistence of EDCs in the environment.
Mostrar más [+] Menos [-]Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination
2018
Niazi, Nabeel Khan | Bibi, Irshad | Shāhid, Muḥammad | Ok, Yong Sik | Burton, Edward D. | Wang, Hailong | Shaheen, Sabry M. | Rinklebe, Jörg | Lüttge, Andreas
In this study, we examined the removal of arsenite (As(III)) and arsenate (As(V)) by perilla leaf-derived biochars produced at 300 and 700 °C (referred as BC300 and BC700) in aqueous environments. Results revealed that the Langmuir isotherm model provided the best fit for As(III) and As(V) sorption, with the sorption affinity following the order: BC700-As(III) > BC700-As(V) > BC300-As(III) > BC300-As(V) (QL = 3.85–11.01 mg g⁻¹). In general, As removal decreased (76–60%) with increasing pH from 7 to 10 except for the BC700-As(III) system, where notably higher As removal (88–90%) occurred at pH from 7 to 9. Surface functional moieties contributed to As sequestration by the biochars examined here. However, significantly higher surface area and aromaticity of BC700 favored a greater As removal compared to BC300, suggesting that surface complexation/precipitation dominated As removal by BC700. Arsenic K-edge X-ray absorption near edge structure (XANES) spectroscopy demonstrated that up to 64% of the added As(V) was reduced to As(III) in BC700- and BC300-As(V) sorption experiments, and in As(III) sorption experiments, partial oxidation of As(III) to As(V) occurred (37–39%). However, XANES spectroscopy was limited to precisely quantify As binding with sulfur species as As2S3-like phase. Both biochars efficiently removed As from natural As-contaminated groundwater (As: 23–190 μg L⁻¹; n = 12) despite in the presence of co-occurring anions (e.g., CO3²⁻, PO4³⁻, SO4²⁻) with the highest levels of As removal observed for BC700 (97–100%). Overall, this study highlights that perilla leaf biochars, notably BC700, possessed the greatest ability to remove As from solution and groundwater (drinking water). Significantly, the integrated spectroscopic techniques advanced our understanding to examine complex redox transformation of As(III)/As(V) with biochar, which are crucial to determine fate of As on biochar in aquatic environments.
Mostrar más [+] Menos [-]Rational design of carbonaceous nanofiber/Ni-Al layered double hydroxide nanocomposites for high-efficiency removal of heavy metals from aqueous solutions
2018
Yu, Shujun | Liu, Yang | Ai, Yuejie | Wang, Xiangxue | Zhang, Rui | Chen, Zhongshan | Chen, Zhe | Zhao, Guixia | Wang, Xiangke
Heavy metal pollution of water sources has raised global environmental sustainability concerns, calling for the development of high-performance materials for effective pollution treatment. Herein, we report a facile approach to synthesize carbonaceous nanofiber/NiAl layered double hydroxide (CNF/LDH) nanocomposites for high-efficiency elimination of heavy metals from aqueous solutions. The CNF/LDH nanocomposites were characterized by three-dimensional architectures formed by the gradual self-assembly of flower-like LDH on CNF. The nanocomposites exhibited excellent hydrophilicity and high structural stability in aqueous solutions, guaranteeing the high availability of active sites in these environments. High-efficiency elimination of heavy metal ions by the CNF/LDH nanocomposites was demonstrated by the high uptake capacities of Cu(II) (219.6 mg/g) and Cr(VI) (341.2 mg/g). The sorption isotherms coincided with the Freundlich model, most likely because of the presence of heterogeneous binding sites. The dominant interaction mechanisms consisted of surface complexation and electrostatic interaction, as verified by a combination of X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy analyses and density functional theory calculations. The results presented herein confirm the importance of CNF/LDH nanocomposites as emerging and promising materials for the efficient removal of heavy metal ions and other environmental pollutants.
Mostrar más [+] Menos [-]