Refinar búsqueda
Resultados 361-370 de 4,935
Particulate matter pollution in Chinese cities: Areal-temporal variations and their relationships with meteorological conditions (2015–2017) Texto completo
2019
Li, Xiaoyang | Song, Hongquan | Zhai, Shiyan | Lu, Siqi | Kong, Yunfeng | Xia, Haoming | Zhao, Haipeng
As the second largest economy in the world, China experiences severe particulate matter (PM) pollution in many of its cities. Meteorological factors are critical in determining both areal and temporal variations in PM pollution levels; understanding these factors and their interactions is critical for accurate forecasting, comprehensive analysis, and effective reduction of this pollution. This study analyzed areal and temporal variations in concentrations of PM₂.₅, PM₁₀, and PMcₒₐᵣₛₑ (PM₁₀ - PM₂.₅) and PM₂.₅ to PM₁₀ ratios (PM₂.₅/PM₁₀) and their relationships with meteorological conditions in 366 Chinese cities from January 1, 2015 to December 31, 2017. On the national scale, PM₂.₅ and PM₁₀ decreased from 48 to 42 μg m⁻³ and from 88 to 84 μg m⁻³, respectively, and the annual mean concentrations were 45 μg m⁻³ (PM₂.₅) and 84 μg m⁻³ (PM₁₀) during the time period (2015–2017). In most regions, largest PM concentrations occurred in winter. However, in northern China, in spring PMcₒₐᵣₛₑ concentrations were highest due to dust. The PM₂.₅/PM₁₀ ratio was higher in southern than in northern China. There were large regional disparities in PM diurnal variations. Generally, PM concentrations were negatively correlated with precipitation, relative humidity, air temperature, and wind speed, but were positively correlated with surface pressure. The sunshine duration showed negative and positive impacts on PM in northern and southern cities, respectively. Meteorological factors impacted particulates of different size differently in different regions and over different periods of time.
Mostrar más [+] Menos [-]Heterogeneous photo-Fenton degradation of formaldehyde using MIL-100(Fe) under visible light irradiation Texto completo
2019
Mohammadifard, Zahra | Saboori, Rahmatallah | Mirbagheri, Naghmeh Sadat | Sabbaghi, Samad
Removal of toxic formaldehyde from environmental waters is crucial to maintain ecosystem sustainability and human health. In this work, MIL-100(Fe) as a heterogeneous Fenton-like photocatalyst was used for the treatment of formaldehyde-contaminated water. The MIL-100(Fe) was synthesized via a facile solvothermal method and fully characterized using different spectroscopic and microscopic techniques. Based on the results, the formation of highly porous, crystalline, and stable visible light-responsive MIL-100(Fe) was confirmed. The Fenton-like photocatalytic efficiency of the MIL-100(Fe) toward the degradation of formaldehyde was then studied under visible light irradiation. For this purpose, the effect of initial concentration of formaldehyde, photocatalyst dose, H₂O₂ concentration, solution pH, and contact time on the removal efficiency of the MIL-100(Fe) was investigated using central composite design. The obtained results showed that the removal efficiency of the MIL-100(Fe) is significantly affected by the initial concentration of formaldehyde. A second-order model with R² = 0.93 was developed for the system that was able to adequately predict the percentage removal of formaldehyde by the MIL-100(Fe) under different experimental conditions. According to the numerical optimization results, by using 1.13 g L⁻¹ photocatalyst and 0.055 mol L⁻¹ H₂O₂, 93% of formaldehyde can be removed after 119 min from an aqueous solution containing 700 mg L⁻¹ of formaldehyde at pH 6.54.
Mostrar más [+] Menos [-]Peroxymonosulfate catalyzed by rGO assisted CoFe2O4 catalyst for removing Hg0 from flue gas in heterogeneous system Texto completo
2019
Zhao, Yi | Nie, Guoxin | Ma, Xiaoying | Xu, Peiyao | Zhao, Xiaochu
The cobalt ferrite-reduced oxidized graphene (CoFe2O4/rGO) catalyst was synthesized by hydrothermal method and characterized by Powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Brunauere Emmette Teller (BET) and Hysteresis loop. For developing a new method of removing elemental mercury (Hg0) from flue gas, the effects of catalyst dosage, PMS concentration, solution pH and reaction temperature on the removal efficiency were investigated experimentally by using peroxymonosulfate (PMS) catalyzed by CoFe2O4/rGO at a self-made bubbling reactor. The average removal efficiency of Hg0 in a 30-min period reached 95.56%, when CoFe2O4/rGO dosage was 0.288 g/L, PMS concentration was 3.5 mmol/L, solution pH was 5.5 and reaction temperature was 55 °C. Meanwhile, based on the free radical quenching experiments, in which, ethyl alcohol and tert butyl alcohol were used as quenchers to prove indirectly the presence of •OH and SO4•−, the characterizations of catalysts and reaction products, and the existing results from other scholars. The reaction mechanism was proposed.
Mostrar más [+] Menos [-]Contaminants in bald eagles of the upper Midwestern U.S.: A framework for prioritizing future research based on in-vitro bioassays Texto completo
2019
Elliott, Sarah M. | Route, William T. | DeCicco, Laura A. | VanderMeulen, David D. | Corsi, Steven R. | Blackwell, Brett R.
Several organic contaminants (OCs) have been detected in bald eagle (Haliaeetus leucocephalus) nestling (eaglet) plasma in the upper Midwestern United States. Despite frequent and relatively high concentrations of OCs in eaglets, little is understood about potential biological effects associated with exposure. We screened an existing database of OC concentrations in eaglet plasma collected from the Midwestern United States against bioactivity information from the ToxCast database. ToxCast bioactivity information consists of concentrations expected to elicit responses across a range of biological space (e.g. cellular, developmental, etc.) obtained from a series of high throughput assays. We calculated exposure—activity ratios (EAR) by calculating the ratio of plasma concentrations to concentrations available in ToxCast. Bioactivity data were not available for all detected OCs. Therefore, our analysis provides estimates of potential bioactivity for 19 of the detected OCs in eaglet plasma. Perfluorooctanesulfonic acid (PFOS) EAR values were consistently the highest among all study areas. Maximum EAR values were ≥1 for PFOS, perfluorononanoic acid, and bisphenol A in 99.7, 0.53 and 0.26% of samples, indicating that some plasma concentrations were greater than what may be expected to elicit biological responses. About 125 gene targets, indicative of specific biological pathways, were identified as potentially being affected. Inhibition of several CYP genes, involved in xenobiotic metabolism, were most consistently identified. Other identified biological responses have potential implications for motor coordination, cardiac functions, behavior, and blood circulation. However, it is unclear what these results mean for bald eagles, given that ToxCast data are generated using mammalian-based endpoints. Despite uncertainties and limitations, this method of screening environmental data can be useful for informing future monitoring or research focused on understanding the occurrence and effects of OCs in bald eagles and other similarly-positioned trophic species.
Mostrar más [+] Menos [-]Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: A review of effects on microorganisms, plants and animals Texto completo
2019
Courtois, Pauline | Rorat, Agnieszka | Lemiere, Sébastien | Guyoneaud, Rémy | Attard, Eléonore | Levard, Clément | Vandenbulcke, Franck
Silver nanoparticles (AgNPs) are widely incorporated in many products, partly due to their antimicrobial properties. The subsequent discharge of this form of silver into wastewater leads to an accumulation of silver species (AgNPs and derivatives resulting from their chemical transformation), in sewage sludge. As a result of the land application of sewage sludge for agricultural or remediation purposes, soils are the primary receiver media of silver contamination. Research on the long-term impact of AgNPs on the environment is ongoing, and this paper is the first review that summarizes the existing state of scientific knowledge on the potential impact of silver species introduced into the soil via sewage sludge, from microorganisms to earthworms and plants. Silver species can easily enter cells through biological membranes and affect the physiology of organisms, resulting in toxic effects. In soils, exposure to AgNPs may change microbial biomass and diversity, decrease plant growth and inhibit soil invertebrate reproduction. Physiological, biochemical and molecular effects have been documented in various soil organisms and microorganisms. Negative effects on organisms of the dominant form of silver in sewage sludge, silver sulfide (Ag₂S), have been observed, although these effects are attenuated compared to the effects of metallic AgNPs. However, silver toxicity is complex to evaluate and much remains unknown about the ecotoxicology of silver species in soils, especially with respect to the possibility of transfer along the trophic chain via accumulation in plant and animal tissues. Critical points related to the hazards associated with the presence of silver species in the environment are described, and important issues concerning the ecotoxicity of sewage sludge applied to soil are discussed to highlight gaps in existing scientific knowledge and essential research directions for improving risk assessment.
Mostrar más [+] Menos [-]Reconstructed algorithm for scattering coefficient of ambient submicron particles Texto completo
2019
Zhu, Wenfei | Cheng, Zhen | Lou, Shengrong | Hu, Wei | Zheng, Jing | Qiao, Liping | Yan, Naiqiang
Ambient submicron particles (PM₁) exert significant impacts on visibility degradation during severe pollution episodes of urban China. The U.S. IMPROVE algorithms are widely used for assessing the extinction effect of atmospheric aerosols, but only suitable for fine particulate matter. A proper algorithm for PM₁ extinction estimation is lacking and becomes urgent, especially after the online measurement of PM₁ species is routine by aerosol mass spectrometers. Here we conducted three-month in-situ measurements to explore mass scattering efficiencies (MSE) of PM₁ major species at a supersite of eastern China. Results indicated that MSEs of ammonium sulfate and nitrate increase quickly and then keep stable with the mass accumulation, while those of organic matter keep at ∼5.5 m²/g but with a large vibration in the whole mass range. The algorithm for reconstructing PM₁ dry scattering coefficient was derived from the integral of the variation patterns for the three PM₁ species. The algorithm was then validated and compared with other empirical algorithms through separate field measurements. Good correlations between the reconstructed and measured dry scattering coefficient were observed with R square higher than 0.9 and slope of 1.01–1.05, indicating that the reconstructed algorithm can predict the dry scattering coefficient well based on PM₁ chemical composition measurements in urban China. Our study is expected to provide observed insights on the variation of MSE in the wide mass range especially in the high region, as well as accurate formulas for ambient PM₁ dry scattering apportionment.
Mostrar más [+] Menos [-]Polluted water from an urban reservoir (Madín dam, México) induces toxicity and oxidative stress in Cyprinus carpio embryos Texto completo
2019
Pérez-Coyotl, I. | Galar-Martínez, M. | García-Medina, S. | Gómez-Oliván, L.M. | Gasca- Pérez, E. | Martínez-Galero, E. | Islas-Flores, H. | Pérez-Pastén, Borja R. | Barceló, D. | López de Alda, M. | Pérez-Solsona, S. | Serra-Roig, M.P. | Montemurro, N. | Peña-Herrera, J.M. | Sánchez-Aceves, L.M.
Polluted water from an urban reservoir (Madín dam, México) induces toxicity and oxidative stress in Cyprinus carpio embryos Texto completo
2019
Pérez-Coyotl, I. | Galar-Martínez, M. | García-Medina, S. | Gómez-Oliván, L.M. | Gasca- Pérez, E. | Martínez-Galero, E. | Islas-Flores, H. | Pérez-Pastén, Borja R. | Barceló, D. | López de Alda, M. | Pérez-Solsona, S. | Serra-Roig, M.P. | Montemurro, N. | Peña-Herrera, J.M. | Sánchez-Aceves, L.M.
The Madín Dam is a reservoir located in the municipalities of Naucalpan and Atizapán, in the metropolitan area adjacent to Mexico City. The reservoir supplies drinking water to nearby communities and provides an area for various recreational activities, including kayaking, sailing and carp fishing. Over time, the number of specimens of common carp has notably diminished in the reservoir, which receives direct domestic drainage from two towns as well as numerous neighborhoods along the Tlalnepantla River. Diverse studies have demonstrated that the pollutants in the water of the reservoir produce oxidative stress, genotoxicity and cytotoxicity in juvenile Cyprinus carpio, possibly explaining the reduction in the population of this species; however, it is necessary to assess whether these effects may also be occurring directly in the embryos. Hence, surface water samples were taken at five sites and pharmaceutical drugs, personal care products (especially sunscreens), organophosphate and organochlorine pesticides, and other persistent organic pollutants (e.g., polychlorinated biphenyls and polycyclic aromatic hydrocarbons) were identified. Embryos of C. carpio were exposed to the water samples to evaluate embryolethality, modifications in embryonic development, lipoperoxidation, the quantity of hydroperoxide and oxidized proteins, and antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase). It was found that the polluted water of the Madín Dam gave rise to embryolethality, embryotoxicity, congenital abnormalities, and oxidative stress on the common carp embryos.
Mostrar más [+] Menos [-]Polluted water from an urban reservoir (Madín dam, México) induces toxicity and oxidative stress in Cyprinus carpio embryos Texto completo
2019
Pérez-Coyotl, I. | Galar-Martínez, Marcela | García-Medina, Sandra | Gómez-Oliván, Leobardo Manuel | Gasca-Pérez, Eloy | Islas-Flores, Hariz | Pérez-Pastén-Borja, Ricardo | Barceló, Damià | López de Alda, Miren | Pérez Solsona, Sandra | Serra-Roig, M. Pau | Montemurro, Nicola | Peña-Herrera, Juan Manuel | Sánchez-Aceves, Livier Mireya | Barceló, Damià [0000-0002-8873-0491] | López De Alda, Miren [0000-0002-9347-2765] | Perez, Sandra [0000-0002-3179-3969] | Montemurro, Nicola [0000-0002-7496-203X] | Peña-Herrera, Juan Manuel [0000-0002-9677-6457] | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
The Madín Dam is a reservoir located in the municipalities of Naucalpan and Atizapán, in the metropolitan area adjacent to Mexico City. The reservoir supplies drinking water to nearby communities and provides an area for various recreational activities, including kayaking, sailing and carp fishing. Over time, the number of specimens of common carp has notably diminished in the reservoir, which receives direct domestic drainage from two towns as well as numerous neighborhoods along the Tlalnepantla River. Diverse studies have demonstrated that the pollutants in the water of the reservoir produce oxidative stress, genotoxicity and cytotoxicity in juvenile Cyprinus carpio, possibly explaining the reduction in the population of this species; however, it is necessary to assess whether these effects may also be occurring directly in the embryos. Hence, surface water samples were taken at five sites and pharmaceutical drugs, personal care products (especially sunscreens), organophosphate and organochlorine pesticides, and other persistent organic pollutants (e.g., polychlorinated biphenyls and polycyclic aromatic hydrocarbons) were identified. Embryos of C. carpio were exposed to the water samples to evaluate embryolethality, modifications in embryonic development, lipoperoxidation, the quantity of hydroperoxide and oxidized proteins, and antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase). It was found that the polluted water of the Madín Dam gave rise to embryolethality, embryotoxicity, congenital abnormalities, and oxidative stress on the common carp embryos. Capsule: The water of the Madín dam contains a complex mixture of pollutants, including hydrocarbons, which produce oxidative stress and embryotoxicity on Cyprinus carpio. © 2019 Elsevier Ltd | This study was made possible by financial support from the Consejo Nacional de Ciencia y Tecnología (CONACyT-Mexico, project #181541 and Cátedras CONACyT, #282), and the Secretaría de Investigación y Posgrado of the Instituto Politécnico Nacional (SIP-IPN, project #20160871 and 20180699). We give thanks to Biologist Gerardo Ontiveros at the Centro Carpícola Tiacaque for supplying the test specimens and giving advice on their care and maintenance. | Peer reviewed
Mostrar más [+] Menos [-]Effects of fly ash application on plant biomass and element accumulations: a meta-analysis Texto completo
2019
Yu, Chih-Li | Deng, Qi | Jian, Siyang | Li, Jianwei | Dzantor, E Kudjo | Hui, Dafeng
Fly ash generated from coal-fired power plants is a source of potential pollutants, but can be used as a soil ameliorant to increase plant biomass and yield in agriculture. However, the effects of fly ash soil application on plant biomass and the accumulation of both nutrient and toxic elements in plants remain unclear. Based on 85 articles, we conducted a comprehensive meta-analysis to evaluate changes in plant biomass and concentrations of 21 elements in plants in response to fly ash application. These elements included macro-nutrients (N, P, K, Ca, and S), micro-nutrients (B, Co, Cu, Fe, Mn, Mo, Ni, and Zn), and metal(loid)s (Al, As, Cd, Cr, Pb, and Se). Overall, fly ash application decreased plant biomass by 15.2%. However, plant biomass was enhanced by fly ash application by 11.6–29.2% at lower application rates (i.e. <25% of soil mass), and decreased by 45.8% at higher application rates (i.e. 50–100%). Belowground biomass was significantly reduced while yield was enhanced by fly ash application. Most of the element concentrations in plants were enhanced by fly ash application, and followed a descending order with metal(loid)s > micro-nutrients > macro-nutrients. Concentrations of elements tended to increase with an increase in fly ash application rate. Our syntheses indicated that fly ash should be applied at less than 25% in order to enhance plant biomass and yield but avoid high accumulations of metal(loid)s.
Mostrar más [+] Menos [-]A systematic assessment of carcinogenicity of chemicals in hydraulic-fracturing fluids and flowback water Texto completo
2019
Xu, Xiaohui | Zhang, Xiao | Carrillo, Genny | Zhong, Yan | Kan, Haidong | Zhang, Bangning
Thousands of chemicals exist in hydraulic-fracturing (HF) fluids and wastewater from unconventional oil gas development. The carcinogenicity of these chemicals in HF fluids and wastewater has never been systematically evaluated.In this study, we assessed the carcinogenicity of 1,173 HF-related chemicals in the HF chemical data from the US Environmental Protection Agency (EPA).We linked the HF chemical data with the agent classification data from the International Agency for Research on Cancer (IARC) at the World Health Organization (WHO) (N = 998 chemicals) to evaluate human carcinogenic risk of the chemicals and with the Carcinogenic Potency Database (CPDB) from Toxnet (N = 1,534 chemicals) to evaluate potential carcinogenicity of the chemicals.The Chemical Abstract Service Registry Numbers (CASRNs) for chemicals were used for data linkage. Among 1,173 chemicals, 1,039 were identified only in HF fluids, 97 only in wastewater, and 37 in both. Compared with IARC, we found information of 104 chemicals, and 48 of them may have potentially carcinogenic risk to human, among which 14 are definitely carcinogenic, 7 probably carcinogenic, and 27 possibly carcinogenic. Using the CPDB data, it suggests that 66 chemicals are potentially carcinogenic based on rats and mouse models.Conclusions Our evaluation suggests that exposure to some chemicals in HF fluids and wastewater may increase cancer risk, and the identified chemicals could be selected as the priority list for drinking water exposure assessment or cancer-related health studies.
Mostrar más [+] Menos [-]Evaluation of groundwater contamination in Chandigarh: Source identification and health risk assessment Texto completo
2019
Ravindra, Khaiwal | Thind, Parteek Singh | Mor, Sahil | Singh, Tanbir | Mor, Suman
The major objective of the current study is to estimate the groundwater quality and identify the likely sources of contamination in Chandigarh, India. Total 80 groundwater samples were collected from different locations and at various depths in the study area. Further, physcio-chemical analysis was done to estimate pH, electrical conductivity (EC), total dissolved solids, total hardness (TH), total alkalinity (TA), Na+, K+, Cl−, SO42−, PO43− and NO3−. The groundwater samples collected from shallow water sources were observed to contain higher amount of dissolved salts. EC, TA, Cl−, TH, Na+, and K+ were found relatively higher in the shallow aquifer (<150 ft). Based on the location of pollution sources at the surface and consecutive geo-statistical distribution of physicochemical characteristics, this study suggests that non-scientific disposal of municipal solid waste,dumping of industrial waste and agricultural activities, in the nearby areas, could lead to deterioration of groundwater of shallow aquifer. These observations were also confirmed using various water quality indices and outcomes of multivariate modeling, including principal component analysis. Health risk assessment for nitrates indicated that 29 groundwater samples pose non-carcinogenic health risk for children due to dermal and oral exposure. Hence, there is a need to establish a system for regularly assessing the groundwater quality so as to minimize public health risks.
Mostrar más [+] Menos [-]