Refinar búsqueda
Resultados 361-370 de 6,533
Characterization of Equivalent Black Carbon at a regional background site in Central Europe: Variability and source apportionment☆
2020
Mbengue, Saliou | Serfozo, Norbert | Schwarz, Jaroslav | Ziková, Nadezda | Šmejkalová, Adéla Holubová | Holoubek, Ivan
Characterizing Black Carbon (BC) at regional background areas is important for better understanding its impact on climate forcing and health effects. The variability and sources of Equivalent Black Carbon (EBC) in PM₁₀ (atmospheric particles with aerodynamic diameter smaller than 10 μm) have been investigated during a 5-year measurement period at the National Atmospheric Observatory Košetice (NAOK), Czech Republic. Ground based measurements were performed from September 2012 to December 2017 with a 7-wavelength aethalometer (AE31, Magee Scientific). The contributions of fossil fuel (EBCff) and biomass burning (EBCbb) were estimated using the aethalometer model. Seasonal, diurnal and weekly variations of EBC were observed that can be related to the sources fluctuations and transport characteristic of pollutants predominantly associated with regional air masses recirculating over the Czech Republic and neighboring countries. The absorption Ångström exponent (α-value) estimated in summer (1.1 ± 0.2) was consistent with reported value for traffic, while the mean highest value (1.5 ± 0.2) was observed in winter due to increased EBCbb accounting for about 50% of the total EBC. This result is in agreement with the strong correlation between EBCbb and biomass burning tracers (levoglucosan and mannosan) in winter. During this season, the concentrations of EBCbb and Delta-C (proxy for biomass burning) reached a maximum in the evening when increasing emissions of wood burning in domestic heating devices (woodstoves/heating system) is expected, especially during the weekend. The diurnal profile of EBCff displays a typical morning peak during the morning traffic rush hour and shows a decreasing concentration during weekends due to lower the traffic emission.
Mostrar más [+] Menos [-]Size-fractionated carbonaceous aerosols down to PM0.1 in southern Thailand: Local and long-range transport effects
2020
Phairuang, Worradorn | Inerb, Muanfun | Furuuchi, Masami | Hata, Mitsuhiko | Tekasakul, Surajit | Phīraphong Thīkhasakun,
In this study, size-fractionated particulate matters (PM) down to ultrafine (PM₀.₁) particles were collected using a cascade air sampler with a PM₀.₁ stage, in Hat Yai city, Songkhla province, southern Thailand during the year 2018. The particle-bound carbonaceous aerosols (CA) as elemental carbon (EC) and organic carbon (OC) were quantified with the thermal/optical reflectance method following the IMPROVE_TOR protocol. The concentrations of different temperature carbon fractions (OC1-OC4, EC1-EC3 and PyO) in the size-fractionated PM were evaluated to discern OC and EC correlations as well as those between char-EC and soot-EC. The results showed that biomass burning, motor vehicle, and secondary organic aerosols (SOC) all contributed to the size-fractionated PM. The OC/EC ratios ranged from 2.90 to 4.30 over the year, with the ratios of PM₂.₅₋₁₀ being the highest, except during the open biomass burning period. The concentration of CA was found to increase during the pre-monsoon season and had its peak value in the PM₀.₅₋₁.₀ fraction. The long-range transport of PMs from Indonesia, southwest of Thailand toward southern Thailand became more obvious during the pre-monsoon season. Transported plumes from biomass burning in Indonesia may increase the concentration of OC and EC both in the fine (PM₀.₅₋₁.₀ and PM₁.₀₋₂.₅) and coarse (PM₂.₅₋₁₀ and PM>₁₀) fractions. The OC fraction in PM₀.₁ was also shown to be significantly affected by the transported plumes during the pre-monsoon season. Good OC and EC correlations (R² = 0.824–0.915) in the fine particle fractions indicated that they had common sources such as fossil fuel combustion. However, the lower and moderate correlations (R² = 0.093–0.678) among the coarser particles suggesting that they have a more complex pattern of emission sources during the dry and monsoon seasons. This indicates the importance of focusing emission control strategies on different PM particle sizes in southern Thailand.
Mostrar más [+] Menos [-]Hydroquinone exposure alters the morphology of lymphoid organs in vaccinated C57Bl/6 mice
2020
Fabris, André Luis | Nunes, Andre Vinicius | Schuch, Viviane | de Paula-Silva, Marina | Rocha, GHO | Nakaya, Helder I. | Ho, Paulo Lee | Silveira, Eduardo L.V. | Farsky, Sandra Helena Poliselli
The influenza is a common viral infection that can be fatal, especially in high-risk groups such as children, pregnant women, elderly, and immune-deficient individuals. Vaccination is the most efficient approach to prevent the spreading of viral infection and promote individual and public health. In contrast, exposure to environmental pollutants such as cigarette smoke reduces the efficacy of vaccination. We investigated whether chronic exposure to hydroquinone (HQ), the most abundant compound of the tobacco particulate phase, could impair the adaptive immune responses elicited by influenza vaccination. For this, adult male C57BL/6 mice were daily exposed to either nebulized HQ or PBS for 1 h for a total of eight weeks. At weeks 6 and 8, the mice were primed and boosted with the trivalent influenza vaccine via IM respectively. Although the HQ exposure did not alter the body weight of the mice and the biochemical and hematological parameters, the pollutant increased the oxidative stress in splenocytes of immunized animals, modified the morphology of spleen follicles, and augmented the size of their lymph nodes. The lymphoid organs of HQ-exposed mice presented a similar number of vaccine-specific IgG-secreting cells, titers of vaccine-specific total IgG, and respective subclasses. Transcriptome studies with HQ, benzene, or cigarette smoke exposure were also analyzed. The genes up-regulated upon pollutant exposure were associated with neutrophil migration and were shown to be co-expressed with antibody-secreting cell genes. Therefore, these findings suggest that HQ exposure may trigger an immune-compensatory mechanism that enhances the humoral responses induced by influenza vaccination.
Mostrar más [+] Menos [-]RETRACTED: Microplastic pollution in intertidal sediments along the coastline of China
2020
Wang, Qing | Shan, Encui | Zhang, Bin | Teng, Jia | Wu, Di | Yang, Xin | Zhang, Chen | Zhang, Wenjing | Sun, Xiyan | Zhao, Jianmin
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).This article has been retracted at the request of the Editors-in-Chief and Authors. The corresponding author informed the journal that full permission had not been obtained to use all the samples documented in the study. The authors apologise for any inconvenience caused.
Mostrar más [+] Menos [-]Dosage effects of lincomycin mycelial residues on lincomycin resistance genes and soil microbial communities
2020
Wang, Mengmeng | Liu, Huiling | Dai, Xiaohu
Lincomycin mycelial residues (LMRs) are one kind of byproduct of the pharmaceutical industry. Hydrothermal treatment has been used to dispose of them and land application is an attractive way to reuse the treated LMRs. However, the safe dose for soil amendment remains unclear. In this study, a lab-scale incubation experiment was conducted to investigate the influence of the amendment dosage on lincomycin resistance genes and soil bacterial communities via quantitative PCR and 16S rRNA sequencing. The results showed that introduced lincomycin degraded quickly in soil and became undetectable after 50 days. Degradation rate of the high amendment amount (100 mg kg−1) was almost 4 times faster than that of low amendment amount (10 mg kg−1). Moreover, the introduced LMRs induced the increase of lincomycin resistance genes after incubation for 8 days, and two genes (lmrA and lnuB) showed a dosage-related increase. For example, the abundance of gene lmrA was 17.78, 74.13 and 128.82 copies g−1 soil for lincomycin concentration of 10, 50 and 100 mg kg−1, respectively. However, the abundance of lincomycin resistance genes recovered to the control level as the incubation period extended to 50 days, indicating a low persistence in soil. In addition, LMRs application markedly shifted the bacterial composition and significant difference was found between control soil, 10 mg kg−1 and 50 mg kg−1 lincomycin amended soil. Actually, several genera bacteria were significantly related to the elevation of lincomycin resistance genes. These results provided a comprehensive understanding of the effects of lincomycin dosage on the fate of resistance genes and microbial communities in LMRs applied soil.
Mostrar más [+] Menos [-]Heterogeneous reaction of ozone with syringic acid: Uptake of O3 and changes in the composition and optical property of syringic acid
2020
Zhang, Tingting | Yang, Wangjin | Han, Chŏng | Yang, He | Xue, Xiangxin
Syringic acid, which is a typical methoxyphenol emitted from wood combustion, can provide heterogeneous reaction sites for gaseous active components, influencing the concentrations of trace gases and the compositions of syringic acid. The heterogeneous uptake of O₃ on syringic acid was investigated using a flow tube reactor under ambient pressure. The initial uptake coefficient (γᵢ) and the steady-state uptake coefficient (γₛₛ) of O₃ linearly increased with syringic acid mass (0–0.16 μg cm⁻²) and temperature (278–328 K), while they decreased with increasing the O₃ concentration and the O₂ content. The γᵢ was independent of relative humidity (20%–70%), whereas γₛₛ decreased with relative humidity (7%–70%). The compositional changes of syringic acid by the ozonization were analyzed by the Fourier transform infrared spectrometer (FT-IR) and the gas chromatography-mass spectrometry (GC-MS), confirming the generation of 2,6-dimethoxy-1,4-benzoquinone. In addition, compared to that of fresh syringic acid, the mass absorption efficiency of syringic acid aged by O₃ exhibited an increase in the range of 290–320 nm.
Mostrar más [+] Menos [-]Effects of external Mn2+ activities on OsNRAMP5 expression level and Cd accumulation in indica rice
2020
Cai, Yimin | Wang, Meie | Chen, Baodong | Chen, Weiping | Xu, Weibiao | Xie, Hongwei | Long, Qizhang | Cai, Yaohui
Manganese (Mn) transporter OsNRAMP5 was widely reported to regulate cadmium (Cd) uptake in rice. However, the relationship between OsNRAMP5 expression level and Cd accumulation, impacts of external ion activities on OsNRAMP5 expression level and Cd accumulation are still unclear. Investigations of the relationship between OsNRAMP5 expression level and Cd accumulation in three indica rice genotypes were conducted under various external Mn²⁺ activities ranging from Mn deficiency to toxicity in EGTA-buffered nutrient solution. Results in this work indicated that OsNRAMP5 expression level in roots significantly up-regulated at Mn phytotoxicity compared to that at Mn deficiency, which may stimulate by the increasing uptake of Mn. Our work also demonstrated that root Cd concentration of all the tested rice decreased notably when external Mn²⁺ activity reached the level of toxicity. This may explain by the increasing competition between the excess Mn²⁺ and Cd²⁺ as well as the disorder of element absorption caused by root damage at Mn toxicity. Our work also revealed that the relationship between OsNRAMP5 expression level in roots and Cd accumulation in roots was insignificant for all the tested genotypes. Besides, OsNRAMP5 expression level in roots seemed more related to root Mn accumulation. The fact that function of OsNRAMP5 mainly focuses on Mn uptake, together with the fact that many transporter genes involved in Cd uptake might result in the insignificant correlation between OsNRAMP5 expression level and Cd accumulation in roots. At last, multi-level regulating and processing of the process from gene expression to protein translation might account for the inconsistent relationship between root OsNRAMP5 expression level and Cd accumulation in roots.
Mostrar más [+] Menos [-]Do whitefish (Coregonus lavaretus) larvae show adaptive variation in the avoidance of microplastic ingestion?
2020
Huuskonen, Hannu | Subiron i Folguera, Joan | Kortet, Raine | Akkanen, Jarkko | Vainikka, Anssi | Janhunen, Matti | Kekäläinen, Jukka
The presence of microplastics in aquatic ecosystems has recently received increased attention. Small plastic particles may resemble natural food items of larval fish and other aquatic organisms, and create strong selective pressures on the feeding traits in exposed populations. Here, we examined if larval ingestion of 90 μm polystyrene microspheres, in the presence of zooplankton (Artemia nauplii, mean length = 433 μm), shows adaptive variation in the European whitefish (Coregonus lavaretus). A full-factorial experimental breeding design allowed us to estimate the relative contributions of male (sire) and female (dam) parents and full-sib family variance in early feeding traits, and also genetic (co)variation between these traits. We also monitored the magnitude of intake and elimination of microplastics from the alimentary tracts of the larvae. In general, larval whitefish ingested small numbers of microplastics (mean = 1.8, range = 0–26 particles per larva), but ingestion was marginally affected by the dam, and more strongly by the full-sib family variation. Microsphere ingestion showed no statistically significant additive genetic variation, and thus, no heritability. Moreover, microsphere ingestion rate covaried positively with the ingestion of Artemia, further suggesting that larvae cannot adaptively avoid microsphere ingestion. Together with the detected strong genetic correlation between food intake and microplastic intake, the results suggest that larval fish do not readily possess additive genetic variation that would help them to adapt to the increasing pollution by microplastics. The conflict between feeding on natural food and avoiding microplastics deserves further attention.
Mostrar más [+] Menos [-]Embryonic exposure to pentabromobenzene inhibited the inflation of posterior swim bladder in zebrafish larvae
2020
Peng, Wei | Liu, Sitian | Guo, Yongyong | Yang, Lihua | Zhou, Bingsheng
The emerging flame retardants pentabromobenzene (PBB) has been frequently detected in recent years and may pose exposure risks to wild animals and human beings. In this study, the inflation of posterior swim bladder of zebrafish larvae was used as an endpoint to study the developmental toxicity and putative mechanisms associated with PBB toxicity. Our results showed that embryonic exposure to PBB could significantly inhibit the inflation of posterior swim bladders. Reduced T3 levels and transcriptional changes of crh and pomc were observed in PBB treated zebrafish larvae at 120 hpf. However, key regulators of thyroid and adrenocortical system involved in the synthesis (tsh), biological conversion (ugt1ab, dio2) and functional regulation (trα, trβ, gr) showed no significant changes. Further data revealed that prlra was the only gene that was altered among the detected genes at 96 h post fertilization (hpf). At 120 hpf, the morphology of swim bladder indicated deflation in treatments at 0.25 μM and higher. In addition, the mRNA levels of anxa5, prlra, prlrb, atp1b2 and slc12a10 were all significantly changed at 120 hpf. Taken together, we suppose that embryonic exposure to PBB inhibited the inflation of swim bladder in zebrafish probably via prlra mediated pathways. The observed changes of thyroid and adrenocortical parameters might be indirect effects evoked by PBB exposure. Overall, our results provide important data and indications for future toxicological study and risk assessment of the emerging flame retardants PBB.
Mostrar más [+] Menos [-]Observation and estimation of mercury exchange fluxes from soil under different crop cultivars and planting densities in North China Plain
2020
Gao, Yu | Wang, Zhangwei | Zhang, Xiaoshan | Wang, Chunjie
The emission of mercury (Hg) from cropland soil greatly affects the global Hg cycle. Combinations of different crop cultivars and planting densities will result in different light transmittance under canopies, which directly affects the solar and heat radiation flux received by the soil surface below crops. In turn, this might lead to differences in the soil–air total gaseous mercury (TGM) exchange under different cropping patterns. However, soil–air TGM exchange fluxes in croplands under differing canopies have been poorly investigated. Here, a one-year observation of TGM exchange flux was conducted for cropland soils covering five different crop cultivars and three planting densities in North China Plain using the dynamic flux chamber method. The results showed that light transmittance under the canopies was the key control on soil–air TGM exchange fluxes. High light transmittance can enhance soil TGM emission rates and increase the magnitude of diurnal variations in soil–air TGM exchange fluxes. Furthermore, we found that there were piecewise–function relationships (Peak function–constant equation) between light transmittance under the different canopies and the numbers of days after crop sowing. The soil–air TGM exchange fluxes showed a parabolic response to changes in light transmittance under the different canopies. A second-order model was established for the response relationship between soil–air TGM exchange flux and soil Hg concentration, total solar radiation above the canopy, and numbers of days after sowing. The estimated annual average soil–air TGM exchange flux was 5.46 ± 21.69 ng m⁻² h⁻¹ at corn–wheat rotation cropland with 30 cm row spacing using this second-order model. Our results might a data reference and a promising foundation for future model development of soil–air TGM exchange in croplands under different crop cultivars and planting densities.
Mostrar más [+] Menos [-]