Refinar búsqueda
Resultados 371-380 de 4,308
Artificial light at night affects sleep behaviour differently in two closely related songbird species Texto completo
2017
Sun, Jiachen | Raap, Thomas | Pinxten, Rianne | Eens, Marcel
Artificial light at night (ALAN) or light pollution is an increasing and worldwide problem. There is growing concern that because of the disruption of natural light cycles, ALAN may pose serious risks for wildlife. While ALAN has been shown to affect many aspects of animal behaviour and physiology, few studies have experimentally studied whether individuals of different species in the wild respond differently to ALAN. Here, we investigated the effect of ALAN on sleep behaviour in two closely related songbird species inhabiting the same study area and roosting/breeding in similar nest boxes. We experimentally exposed free-living great tits (Parus major) and blue tits (Cyanistes caeruleus) to artificial light inside their nest boxes and observed changes in their sleep behaviour compared to the previous night when the nest boxes were dark.In line with previous studies, sleep behaviour of both species did not differ under dark conditions. ALAN disrupted sleep in both great and blue tits. However, compared to blue tits, great tits showed more pronounced effects and more aspects of sleep were affected. Light exposed great tits entered the nest boxes and fell asleep later, woke up and exited the nest boxes earlier, and the total sleep amount and sleep percentage were reduced. By contrast, these changes in sleep behaviour were not found in light exposed blue tits. Our field experiment, using exactly the same light manipulation in both species, provides direct evidence that two closely related species respond differently to ALAN, while their sleep behaviour under dark conditions was similar. Our research suggests that findings for one species cannot necessarily be generalised to other species, even closely-related species. Furthermore, species-specific effects could have implications for community dynamics.
Mostrar más [+] Menos [-]Identifying the impacts of climate on the regional transport of haze pollution and inter-cities correspondence within the Yangtze River Delta Texto completo
2017
Xiao, Hang | Huang, Zhongwen | Zhang, Jingjing | Zhang, Huiling | Chen, Jinsheng | Zhang, Han | Tong, Lei
Regional haze pollution has become an important environmental issue in the Yangtze River Delta (YRD) region. Regional transport and inter-influence of PM2.5 among cities occurs frequently as a result of the subtropical monsoon climate. Backward trajectory statistics indicated that a north wind prevailed from October to March, while a southeast wind predominated from May to September. The temporal relationships of carbon and nitrogen isotopes among cities were dependent on the prevailing wind direction. Regional PM2.5 pollution was confirmed in the YRD region by means of significant correlations and similar cyclical characteristics of PM2.5 among Lin'an, Ningbo, Nanjing and Shanghai. Granger causality tests of the time series of PM2.5 values indicate that the regional transport of haze pollutants is governed by prevailing wind direction, as the PM2.5 concentrations from upwind area cities generally influence that of the downwind cities. Furthermore, stronger correlation coefficients were identified according to monsoon pathways. To clarify the impacts of the monsoon climate, a vector autoregressive (VAR) model was introduced. Variance decomposition in the VAR model also indicated that the upwind area cities contributed significantly to PM2.5 in the downwind area cities. Finally, we attempted to predict daily PM2.5 concentrations in each city based on the VAR model using data from all cities and obtained fairly reasonable predictions. These indicate that statistical methods of the Granger causality test and VAR model have the potential to evaluate inter-influence and the relative contribution of PM2.5 among cities, and to predict PM2.5 concentrations as well.
Mostrar más [+] Menos [-]Mercury exposure and source tracking in distinct marine-caged fish farm in southern China Texto completo
2017
Xu, Xiaoyu | Wang, Wen-Xiong
Coasts of South China have experienced an unprecedented growth in its marine-caged fish industry. We analyzed mercury concentrations and stable mercury isotope ratios in fourteen fish species from two cage-cultured farms in Southern China. Total mercury concentrations of all species were lower than the human health screening values, but the human exposures through consumption of several carnivorous fish exceeded the USEPA's reference dose. Isotopic compositions in the sediment (δ202Hg: −1.45‰ to −1.23‰; Δ199Hg: −0.04‰ to –0.01‰) suggested that mercury in these farms were from coal combustion and industrial inputs. Commercial food pellets and fresh fish viscera provided the major sources of methylmercury to the farmed fish and dominated their mercury isotopic signatures. Non-carnivorous fish presented lower δ202Hg and Δ199Hg values than the carnivorous fish. Using a mixing model, we demonstrated that the majority of mercury in non-carnivorous species came from pellets and in carnivorous fish came from combined diets of pellets and viscera. Meanwhile, methylmercury concentrations and % methylmercury in the fish were positively correlated with δ202Hg values but not with Δ199Hg values, mainly because fish eating similar feeds maintained similar Δ199Hg values. Environmental influences of cage farming such as fish feces and uneaten viscera that continuously provide organic mercury to the environments need to be considered.
Mostrar más [+] Menos [-]Facile preparation of magnetic mesoporous MnFe2O4@SiO2−CTAB composites for Cr(VI) adsorption and reduction Texto completo
2017
Li, Na | Fu, Fenglian | Lü, Jianwei | Ding, Zecong | Tang, Bing | Pang, Jiabin
Chromium-contaminated water is regarded as one of the biggest threats to human health. In this study, a novel magnetic mesoporous MnFe2O4@SiO2−CTAB composite was prepared by a facile one-step modification method and applied to remove Cr(VI). X-ray diffraction, scanning electron microscopy, transmission electron microscopy, specific surface area, and vibrating sample magnetometer were used to characterize MnFe2O4@SiO2−CTAB composites. The morphology analysis showed that the composites displayed a core-shell structure. The outer shell was mesoporous silica with CTAB and the core was MnFe2O4 nanoparticles, which ensured the easy separation by an external magnetic field. The performance of MnFe2O4@SiO2−CTAB composites in Cr(VI) removal was far better than that of bare MnFe2O4 nanoparticles. There were two reasons for the effective removal of Cr(VI) by MnFe2O4@SiO2−CTAB composites: (1) mesoporous silica shell with abundant CTA+ significantly enhanced the Cr(VI) adsorption capacity of the composites; (2) a portion of Cr(VI) was reduced to less toxic Cr(III) by MnFe2O4, followed by Cr(III) immobilized on MnFe2O4@SiO2−CTAB composites, which had been demonstrated by X-ray photoelectron spectroscopy results. The adsorption of Cr(VI) onto MnFe2O4@SiO2−CTAB followed the Freundlich isotherm model and pseudo-second-order model. Tests on the regeneration and reuse of the composites were performed. The removal efficiency of Cr(VI) still retained 92.4% in the sixth cycle. MnFe2O4@SiO2−CTAB composites exhibited a great potential for the removal of Cr(VI) from water.
Mostrar más [+] Menos [-]Imidacloprid induces various toxicological effects related to the expression of 3β-HSD, NR5A1, and OGG1 genes in mature and immature rats Texto completo
2017
Abdel-Rahman Mohamed, Amany | Mohamed, Wafaa A.M. | Khater, Safaa I.
This study aimed to evaluate the adverse effects of the insecticide imidacloprid (IMI) on male spermatogenesis, steroidogenesis, and DNA damage in sexually mature and immature rats. Forty male rats (mature and immature) were equally divided into four groups: two mature and two immature groups. IMI groups of both ages were orally administered IMI in corn oil at a concentration of 1 mg/mL for kg BW/day, whereas their respective controls were orally administered corn oil only (1 mL/kg of body weight) daily for 65 days. On day 66, the rats were lightly anesthetized and then euthanized by cervical dislocation. Whole blood was collected for hemogram, serum for hormonal profile, semen for sperm profile, and testes for gene expression and histopathological, and immunohistochemical examinations. The obtained results revealed that both sexually mature and immature rats orally exposed to IMI showed serious abnormalities in sperm morphology and concentrations, with an imbalance of sexual hormones. There were increases in the level of serum 8-hydroxy-2′-deoxyguanosine and in the percentage of comet (tailed) sperm DNA in the IMI-treated groups. The results exhibited the upregulation of a DNA damage tolerance gene (8-oxoguanine glycosylase 1) and downregulation of the activity of steroidogenic genes (nuclear receptor subfamily 5, group A, member 1 and 3β-hydroxysteroid dehydrogenase). Immunohistochemical examination of the B-cell lymphoma 2-associated X apoptotic protein in testicular sections showed various degrees of apoptosis in the spermatogonial cells of the IMI-treated rats compared to the control groups. These damaging effects of IMI were more pronounced in the sexually mature rats than in the immature rats. In conclusion, despite using a low dose of IMI in the present study, there were noticeable harmful consequences on the reproductive system at different stages of sexual maturity in male rats.
Mostrar más [+] Menos [-]Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars Texto completo
2017
Peng, Hongbo | Gao, Peng | Chu, Gang | Pan, Bo | Peng, Jinhui | Xing, Baoshan
In this research, adsorption of Cu(II) and Cd(II) by biochars was investigated. To enhance the adsorption of these two metal ions, a simple modification of biochars by phosphoric acid (H(3)PO(4)) was carried out. The surface area was larger and the contents of oxygen-containing functional groups of modified biochars were more than pristine biochars. In comparison with pristine biochar, modified biochars sorbed Cu(II) and Cd(II) much more strongly. Surface area had significant effects on the sorption of Cu(II) and Cd(II) by modified biochars. X-ray photoelectron spectroscopy analyses indicated that the quantities of carboxyl (-COOH) and hydroxyl (-OH) functional groups of modified biochars were larger than those of pristine biochar at the same pyrolysis temperature. Compared with that of pristine biochars, the strong ability of -COOH and -OH of modified biochars to form complexes with Cu(II)/Cd(II) ions resulted in higher adsorption of these two metal ions. The phosphorus-containing groups of modified biochars, such as P=O and P=OOH from the result of Fourier transform infrared spectroscopy, interacted and also formed complexes with metal ions, possibly resulting in the enhanced adsorption of Cu(II) and Cd(II). Thus, sorption of metal ions by modified biochars was controlled by the mechanism of surface complexation between oxygen containing functional groups and metals. In general, the H(3)PO(4) modification was an effective method that prepared biochars with a high affinity for the sorption of heavy metals.
Mostrar más [+] Menos [-]Gas–particle phase partitioning and particle size distribution of chlorinated and brominated polycyclic aromatic hydrocarbons in haze Texto completo
2017
Jin, Rong | Zheng, Minghui | Yang, Hongbo | Yang, Lili | Wu, Xiaolin | Xu, Yang | Liu, Guorui
Chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) are emerging semi-volatile organic pollutants in haze-associated particulate matter (PM). Their gas–particle phase partitioning and distribution among PM fractions have not been clarified. Clarification would increase understanding of atmospheric behavior and health risks of Cl/Br-PAHs. In this study, samples of the gas phase and 4 PM phases (aerodynamic diameters (dae) > 10 μm, 2.5–10 μm, 1.0–2.5 μm, and <1.0 μm) were collected simultaneously during haze events in Beijing and analyzed. Normalized histogram distribution indicated that the Cl/Br-PAHs tended to adhere to fine particles. Over 80% of the Cl-PAHs and 70% of the Br-PAHs were associated with fine PM (dae < 2.5 μm). The gas–particle phase partitioning and PM distribution of Cl/Br-PAHs when heating of buildings was required, which was associated with haze events, were obviously different from those when heating was not required. The relationship between the logarithmic geometric mean diameters of the Cl/Br-PAH congeners and reciprocal of the temperature (1/T) suggested that low air temperatures during the heating period could lead to high proportions of Cl/Br-PAHs in the fine particles. Increased coal burning during the heating period also contributed to high Cl/Br-PAH loads in the fine particles.
Mostrar más [+] Menos [-]A novel nuclear xenobiotic receptors (AhR/PXR/CAR)-mediated mechanism of DEHP-induced cerebellar toxicity in quails (Coturnix japonica) via disrupting CYP enzyme system homeostasis Texto completo
2017
Du, Zheng-Hai | Xia, Jun | Sun, Xiao-Chen | Li, Xue-Nan | Zhang, Cong | Zhao, Hua-Shan | Zhu, Shi-Yong | Li, Jin-Long
Di-(2-ethylhexyl)-phthalate (DEHP) is causing serious health hazard in wildlife animal and human through environment and food chain, including the effect of brain development and impacted neurobehavioral outcomes. However, DEHP exposure caused cerebellar toxicity in bird remains unclear. To evaluate DEHP-exerted potential neurotoxicity in cerebellum, male quails were exposed with 0, 250, 500 and 750 mg/kg BW/day DEHP by gavage treatment for 45 days. Neurobehavioral abnormality and cerebellar histopathological alternation were observed in DEHP-induced quails. DEHP exposure increased the contents of total Cytochrome P450s (CYPs) and Cytochrome b5 (Cyt b5) and the activities of NADPH-cytochrome c reductase (NCR) and aniline-4-hydeoxylase (AH) in quail cerebellum. The expression of nuclear xenobiotic receptors (NXRs) and the transcriptions of CYP enzyme isoforms were also influenced in cerebellum by DEHP exposure. These results suggested that DEHP exposure caused the toxic effects of quail cerebellum. DEHP exposure disrupted the cerebellar CYP enzyme system homeostasis via affecting the transcription of CYP enzyme isoforms. The cerebellar P450arom and CYP3A4 might be biomarkers in evaluating the neurotoxicity of DEHP in bird. Finally, this study provided new evidence that DEHP-induced toxic effect of quail cerebellum was associated with activating the NXRs responses and disrupting the CYP enzyme system homeostasis.
Mostrar más [+] Menos [-]Thallium contamination in arable soils and vegetables around a steel plant—A newly-found significant source of Tl pollution in South China Texto completo
2017
Liu, Juan | Luo, Xuwen | Wang, Jin | Xiao, Tangfu | Chen, Diyun | Sheng, Guodong | Yin, Meiling | Lippold, Holger | Wang, Chunlin | Chen, Yongheng
Thallium (Tl) is a highly toxic rare element. Severe Tl poisoning can cause neurological brain damage or even death. The present study was designed to investigate contents of Tl and other associated heavy metals in arable soils and twelve common vegetables cultivated around a steel plant in South China, a newly-found initiator of Tl pollution. Potential health risks of these metals to exposed population via consumption of vegetables were examined by calculating hazard quotients (HQ). The soils showed a significant contamination with Tl at a mean concentration of 1.34 mg/kg. The Tl levels in most vegetables (such as leaf lettuce, chard and pak choy) surpassed the maximum permissible level (0.5 mg/kg) according to the environmental quality standards for food in Germany. Vegetables like leaf lettuce, chard, pak choy, romaine lettuce and Indian beans all exhibited bioconcentration factors (BCF) and transfer factors (TF) for Tl higher than 1, indicating a hyperaccumulation of Tl in these plants. Although the elevated Tl levels in the vegetables at present will not immediately pose significant non-carcinogenic health risks to residents, it highlights the necessity of a permanent monitoring of Tl contamination in the steel-making areas.
Mostrar más [+] Menos [-]The fate of technical-grade chlordane in mice fed a high-fat diet and its roles as a candidate obesogen Texto completo
2017
Wang, Dezhen | Wang, Xinru | Zhang, Ping | Wang, Yao | Zhang, Renke | Yan, Jin | Zhou, Zhiqiang | Zhu, Wentao
Epidemiological studies indicate that exposure to persistent organic pollutants is positively associated with the prevalence of obesity. To delineate the potential role of technical-grade chlordane in obesity development, chlordane metabolism and chlordane-induced metabolic changes were investigated in mice fed high-fat diet (HFD) over a 6-week period. Gas chromatography–electron capture detector analysis showed that HFD induced more accumulation of technical chlordane in the liver, muscle and adipose tissue. The enantioselectivities of oxychlordane in selected tissues were also influenced by HFD. 1H NMR-based liver metabolome indicated that technical chlordane can enhance the metabolic alterations induced by HFD. Compared with the low-fat diet (LFD) group, no differences were observed in the LFD + chlordane group. However, as many as 16 metabolites were significantly different between the HFD group and HFD + chlordane group. Moreover, compared to the LFD + chlordane group, the abundances of 24 metabolites significantly increased or decreased in the HFD + chlordane group. Twenty metabolites were altered in the HFD group compared to the LFD group. Tryptophan profiling suggested that both chlordane and HFD can disturb tryptophan catabolism. These interactions between technical chlordane and HFD suggest that technical chlordane is a candidate obesogen.
Mostrar más [+] Menos [-]