Refinar búsqueda
Resultados 3701-3710 de 4,043
Short residence duration was associated with asthma but not cognitive function in the elderly: USA NHANES, 2001–2002 Texto completo
2016
Shiue, Ivy
There has been a growing interest in how the built environment affects health and well-being. Housing characteristics are associated with human health while environmental chemicals could have mediated the effects. However, it is unclear if and how residence duration might have a role in health and well-being. Therefore, the aim of the present study was to investigate the associations among residence duration, common chronic diseases, and cognitive function in older adults in a national and population-based setting. Data were extracted from the US National Health and Nutrition Examination Survey, 2001–2002, with assessment information on demographics, lifestyle factors, housing characteristics, self-reported common chronic diseases, and cognitive function by using the digit symbol substitution test from the Wechsler Adult Intelligence Scale (a measurement of attention and psychomotor speed). Statistical analyses including the chi-square test, t test, and survey-weighted general linear modeling and logistic regression modeling were performed. Residence duration was significantly associated with risk of asthma but not with other chronic disease, showing a longer stay in the same housing leading to lower risk of asthma (OR 0.43, 95%CI 0.27–0.69, P = 0.002) among the American older adults. However, having asthma was not associated with cognitive function decline. In conclusion, residence duration was found to be associated with risk of asthma but not cognitive function. Future research examining the relationship of residence duration and cognitive tests by other domains of cognitive function following asthma episodes would be suggested. For practice and policy implications, familiarity with the housing environment might help with lessening respiratory symptoms.
Mostrar más [+] Menos [-]Suppression of PCDD/Fs during thermal desorption of PCBs-contaminated soil Texto completo
2016
Zhao, Zhonghua | Ni, Mingjiang | Li, Xiaodong | Buekens, Alfons | Yan, Jianhua
Thermal treatment of polychlorinated biphenyls (PCBs) contaminated soil was shown in earlier work to generate new PCBs, as well as polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). In this study, this thermal desorption was conducted with addition of three distinct inhibitors, including ammonium sulphate, urea and calcium oxide, to inhibit the formation of PCDDs and PCDFs when remediating PCBs-contaminated soil. Experiments were conducted for 40 min at 400 °C after adding 1 wt.% of inhibitor. Both the total PCDD/Fs and international toxic equivalent quantity (I-TEQ) reduced when inhibitors were introduced. Of the three compounds tested, CaO shows the highest inhibition efficiency, 92.2 % for total PCDD/Fs and 95.6 % for I-TEQ. The amount of CaO added also influences the suppression efficiency of PCDD/Fs. These results suggest that promoting desorption and destruction of precursors is probably the mechanism of suppression.
Mostrar más [+] Menos [-]Assessment of diesel-contaminated domestic wastewater treated by constructed wetlands for irrigation of chillies grown in a greenhouse Texto completo
2016
Al-Isawi, Rawaa H. K. | Scholz, Miklas | Al-Faraj, Furat A. M.
In order to avoid environmental pollution and eliminate the need for using fertiliser, this study assessed for the first time the optimum performance of mature (in operation since 2011) vertical flow constructed wetlands in treating domestic wastewater (with and without hydrocarbon) and the subsequent recycling of the outflow to irrigate chillies (De Cayenne; Capsicum annuum (Linnaeus) Longum Group ‘De Cayenne’) grown in a greenhouse. Various variables were investigated to assess the treatment performance. Concerning chilli fruit numbers, findings showed that the highest fruit yields for all wetland filters were associated with those that received inflow wastewater with a high loading rate, reflecting the high nutrient availability in treated wastewater, which is of obvious importance for yield production. Findings also indicated that wetlands without hydrocarbon, small aggregate size, low contact time and low inflow loading rate provided high marketable yields (expressed in economic return). In comparison, chillies irrigated by filters with hydrocarbon contamination, small aggregate size, high contact time and high loading rate also resulted in high marketable yields of chillies, which pointed out the role of high contact time and high inflow load for better diesel degradation rates.
Mostrar más [+] Menos [-]How contamination sources and soil properties can influence the Cd and Pb bioavailability to snails Texto completo
2016
Pauget, Benjamin | Gimbert, Frédéric | Coeurdassier, Mickael | Druart, Coline | Crini, Nadia | de Vaufleury, Annette
To better understand the fate of metals in the environment, numerous parameters must be studied, such as the soil properties and the different sources of contamination for the organisms. Among bioindicators of soil quality, the garden snail (Cantareus aspersus) integrates multiple sources (e.g. soil, plant) and routes (e.g. digestive, cutaneous) of contamination. However, the contribution of each source on metal bioavailability and how soil properties influence these contributions have never been studied when considering the dynamic process of bioavailability. Using accumulation kinetics, this study showed that the main assimilation source of Cd was lettuce (68 %), whereas the main source of Pb was the soil (90 %). The plant contribution increased in response to a 2-unit soil pH decrease. Unexpectedly, an increase in the soil contribution to metal assimilation accompanied an increase in the organic matter (OM) content of the soil. For both metals, no significant excretion and influence of source on excretion have been modelled either during exposure or depuration. This study highlights how the contribution of different sources to metal bioavailability changes based on changes in soil parameters, such as pH and OM, and the complexity of the processes that modulate metal bioavailability.
Mostrar más [+] Menos [-]Surfactants in aquatic and terrestrial environment: occurrence, behavior, and treatment processes Texto completo
2016
Jardak, K. | Drogui, P. | Daghrir, R.
Surfactants belong to a group of chemicals that are well known for their cleaning properties. Their excessive use as ingredients in care products (e.g., shampoos, body wash) and in household cleaning products (e.g., dishwashing detergents, laundry detergents, hard-surface cleaners) has led to the discharge of highly contaminated wastewaters in aquatic and terrestrial environment. Once reached in the different environmental compartments (rivers, lakes, soils, and sediments), surfactants can undergo aerobic or anaerobic degradation. The most studied surfactants so far are linear alkylbenzene sulfonate (LAS), quaternary ammonium compounds (QACs), alkylphenol ethoxylate (APEOs), and alcohol ethoxylate (AEOs). Concentrations of surfactants in wastewaters can range between few micrograms to hundreds of milligrams in some cases, while it reaches several grams in sludge used for soil amendments in agricultural areas. Above the legislation standards, surfactants can be toxic to aquatic and terrestrial organisms which make treatment processes necessary before their discharge into the environment. Given this fact, biological and chemical processes should be considered for better surfactants removal. In this review, we investigate several issues with regard to: (1) the toxicity of surfactants in the environment, (2) their behavior in different ecological systems, (3) and the different treatment processes used in wastewater treatment plants in order to reduce the effects of surfactants on living organisms.
Mostrar más [+] Menos [-]Electrochemical detection of malathion pesticide using acetylcholinesterase biosensor based on glassy carbon electrode modified with conducting polymer film Texto completo
2016
Guler, Muhammet | Turkoglu, Vedat | Kivrak, Arif
Acetylcholinesterase (AChE) biosensor based on conducting poly([2,2̍ʹ;5̍′ 2″]-terthiophene-3̍-carbaldehyde) (PTT) modified glassy carbon electrode (GCE) was constructed. AChE was immobilized on PTT film surface through the covalent bond between aldehyde and amino groups. The properties of PTT modified GCE were studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). The biosensor showed an oxidation peak at +0.83 V related to the oxidation of thiocholine, hydrolysis product of acetylthiocholine iodide (ATCI), catalyzed by AChE. The optimum current response of the biosensor was observed at pH 7.5–8.0, 40 °C and 120 U/cm² of AChE concentration. The biosensor showed a high sensitivity (183.19 μA/mM), a linear range from 0.015 to 1.644 mM, and a good reproducibility with 1.7 % of relative standard deviation (RSD). The biosensor showed a good stability. The interference of glycin, ascorbic acid, histidine, uric acid, dopamine, and arginine on the biosensor response was studied. An important analytical response from these inteferents that overlaps the biosensor response was not observed. The inhibition rate of malathion as a model pesticide was proportional to its concentrations from 9.99 to 99.01 nM. The detection limit was 4.08 nM.
Mostrar más [+] Menos [-]Sediment cores from kettle holes in NE Germany reveal recent impacts of agriculture Texto completo
2016
Kleeberg, Andreas | Neyen, Marielle | Schkade, Uwe-Karsten | Kalettka, Thomas | Lischeid, Gunnar
Glacial kettle holes in young moraine regions receive abundant terrigenous material from their closed catchments. Core chronology and sediment accumulation were determined for two semi-permanent kettle holes, designated RG and KR, on arable land close to the villages of Rittgarten and Kraatz, respectively, in Uckermark, NE Germany. Core dating (²¹⁰Pb, ¹³⁷Cs) revealed variable sediment accretion rates through time (RG 0.4–23.1 mm a⁻¹; KR 0.2–35.5 mm a⁻¹), with periods of high accumulation corresponding to periods of intensive agricultural activity and consequent erosional inputs from catchments. Sediment composition (C, N, P, S, K, Ca, Fe, Mn, Zn, Cu, Mo, Pb, Cd, Zr) was used to determine sediment source and input processes. At RG, annual P input increased from 0.65 kg ha⁻¹ in the early nineteenth century to 1.67 kg ha⁻¹ by 2013. At KR, P input increased from 0.6 to 4.1 kg ha⁻¹ over the last century. There was a concurrent increase in Fe input in both water bodies. Thus, Fe/P ratios showed no temporal trend and did not differ between RG (18.5) and KR (18.4), indicating similar P mobility. At RG, the S/Fe ratio increased from 0.4 to 2.3, indicating more iron sulphides and thus higher P availability, coinciding with high coverage of duckweed (Spirodela polyrhiza (L.)) and soft hornwort (Ceratophyllum submersum L.). At KR, however, this ratio remained low and relatively unchanged (0.3 ± 0.4), indicating more efficient Fe-P binding and lower hydrophyte productivity. Trends in sediment composition indicate a shift towards eutrophication in both kettle holes, but with differences in timing and magnitude. Other morphologically similar kettle holes in NE Germany that are prone to erosion could have been similarly impacted but may differ in the extent of sediment infilling and degradation of their ecological functions.
Mostrar más [+] Menos [-]Peclet number analysis of cross-flow in porous gas diffusion layer of polymer electrolyte membrane fuel cell (PEMFC) Texto completo
2016
Suresh, P. V. | Jayanti, Sreenivas
Adoption of hydrogen economy by means of using hydrogen fuel cells is one possible solution for energy crisis and climate change issues. Polymer electrolyte membrane (PEM) fuel cell, which is an important type of fuel cells, suffers from the problem of water management. Cross-flow is induced in some flow field designs to enhance the water removal. The presence of cross-flow in the serpentine and interdigitated flow fields makes them more effective in proper distribution of the reactants on the reaction layer and evacuation of water from the reaction layer than diffusion-based conventional parallel flow fields. However, too much of cross-flow leads to flow maldistribution in the channels, higher pressure drop, and membrane dehydration. In this study, an attempt has been made to quantify the amount of cross-flow required for effective distribution of reactants and removal of water in the gas diffusion layer. Unit cells containing two adjacent channels with gas diffusion layer (GDL) and catalyst layer at the bottom have been considered for the parallel, interdigitated, and serpentine flow patterns. Computational fluid dynamics-based simulations are carried out to study the reactant transport in under-the-rib area with cross-flow in the GDL. A new criterion based on the Peclet number is presented as a quantitative measure of cross-flow in the GDL. The study shows that a cross-flow Peclet number of the order of 2 is required for effective removal of water from the GDL. Estimates show that this much of cross-flow is not usually produced in the U-bends of Serpentine flow fields, making these areas prone to flooding.
Mostrar más [+] Menos [-]The effects of CYP1A inhibition on alkyl-phenanthrene metabolism and embryotoxicity in marine medaka (Oryzias melastigma) Texto completo
2016
Mu, Jingli | Jin, Fei | Wang, Juying | Wang, Ying | Cong, Yi
Alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) are the predominant form of PAHs in crude oils, of which, 3–5 ring alkyl-PAH may cause dioxin-like toxicity to early life stages of fish. Retene (7-isopropyl-1-methylphenanthrene), a typical alkyl-phenanthrene compound, can be more toxic than phenanthrene, and the mechanism of retene toxicity is likely related to its rapid biotransformation by cytochrome P450 (CYP) enzymes to metabolites with a wide array of structures and potential toxicities. Here, we investigated how α-naphthoflavone (ANF), a cytochrome P450 1A (CYP1A) inhibitor, affected the embryotoxicity of retene and the role that CYP1A inhibition may play in the interactions. Marine medaka (Oryzias melastigma) embryos were exposed, separately or together, to 200 μg/L retene with 0, 5, 10, 100, and 200 μg/L ANF for 14 days. The results showed that ANF significantly inhibited the induction of CYP1A activity by retene; however, ANF interacted with retene to induce significant developmental toxicity and genotoxicity at 10, 100, and 200 μg/L (p < 0.01). Tissue concentrations of retene and its metabolites and lipid hydroperoxide (LPO) activity also increased, whereas the inhibition of the glutathione S-transferase (GST) activity and the alteration in metabolic profiles of retene were observed. The interactions of retene with ANF indicate that CYP1A inhibition was possibly act through different mechanisms to produce similar developmental effects and genotoxicity. Retene metabolites and altered metabolic profile were likely responsible for retene embryotoxicity to marine medaka. Therefore, elevated toxicity of alkyl-phenanthrene under CYP1A inhibitor suggested that the ecotoxicity of PAHs in coastal water may have underestimated the threat of PAHs to fish or ecosystem.
Mostrar más [+] Menos [-]Improvement of methyl orange dye biotreatment by a novel isolated strain, Aeromonas veronii GRI, by SPB1 biosurfactant addition Texto completo
2016
Mnif, Inès | Maktouf, Sameh | Fendri, Raouia | Kriaa, Mouna | Ellouze, Semia | Ghribi, Dhouha
Aeromonas veronii GRI (KF964486), isolated from acclimated textile effluent after selective enrichment on azo dye, was assessed for methyl orange biodegradation potency. Results suggested the potential of this bacterium for use in effective treatment of azo-dye-contaminated wastewaters under static conditions at neutral and alkaline pH value, characteristic of typical textile effluents. The strain could tolerate higher doses of dyes as it was able to decolorize up to 1000 mg/l. When used as microbial surfactant to enhance methyl orange biodecolorization, Bacillus subtilis SPB1-derived lipopeptide accelerated the decolorization rate and maximized slightly the decolorization efficiency at an optimal concentration of about 0.025 %. In order to enhance the process efficiency, a Taguchi design was conducted. Phytotoxicity bioassay using sesame and radish seeds were carried out to assess the biotreatment effectiveness. The bacterium was able to effectively decolorize the azo dye when inoculated with an initial optical density of about 0.5 with 0.25 % sucrose, 0.125 % yeast extract, 0.01 % SPB1 biosurfactant, and when conducting an agitation phase of about 24 h after static incubation. Germination potency showed an increase toward the nonoptimized conditions indicating an improvement of the biotreatment. When comparing with synthetic surfactants, a drastic decrease and an inhibition of orange methyl decolorization were observed in the presence of CTAB and SDS. The nonionic surfactant Tween 80 had a positive effect on methyl orange biodecolorization. Also, studies ensured that methyl orange removal by this strain could be due to endocellular enzymatic activities. To conclude, the addition of SPB1 bioemulsifier reduced energy costs by reducing effective decolorization period, biosurfactant stimulated bacterial decolorization method may provide highly efficient, inexpensive, and time-saving procedure in treatment of textile effluents.
Mostrar más [+] Menos [-]