Refinar búsqueda
Resultados 381-390 de 448
Testing antimicrobial cleaner efficacy on gypsum wallboard contaminated with Stachybotrys chartarum
2007
Menetrez, Marc Y. | Foarde, Karin K. | Webber, Tricia D. | Dean, Timothy R. | Betancourt, Doris A.
GOAL, SCOPE AND BACKGROUND: Reducing occupant exposure to indoor mold is the goal of this research, through the efficacy testing of antimicrobial cleaners. Often mold contaminated building materials are not properly removed, but instead surface cleaners are applied in an attempt to alleviate the problem. The efficacy of antimicrobial cleaners to remove, eliminate or control mold growth on surfaces can easily be tested on non-porous surfaces. However, the testing of antimicrobial cleaner efficacy on porous surfaces, such as those found in the indoor environment such as gypsum board can be more complicated and prone to incorrect conclusions regarding residual organisms. The mold Stachybotrys chartarum has been found to be associated with idiopathic pulmonary hemorrhage in infants and has been studied for toxin production and its occurrence in water damaged buildings. Growth of S. chartarum on building materials such as gypsum wallboard has been frequently documented. METHODS: Research to control S. chartarum growth using 13 separate antimicrobial cleaners on contaminated gypsum wallboard has been performed in laboratory testing. Popular brands of cleaning products were tested by following directions printed on the product packaging. RESULTS: A variety of gypsum wallboard surfaces were used to test these cleaning products at high relative humidity. The results indicate differences in antimicrobial efficacy for the six month period of testing. DISCUSSION: Results for the six types of GWB surfaces varied extensively. However, three cleaning products exhibited significantly better results than others. Lysol All-Purpose Cleaner-Orange Breeze (full strength) demonstrated results which ranked among the best in five of the six surfaces tested. Both Borax and Orange Glo Multipurpose Degreaser demonstrated results which ranked among the best in four of the six surfaces tested. CONCLUSIONS: The best antimicrobial cleaner to choose is often dependent on the type of surface to be cleaned of S. chartarum contamination. For Plain GWB, no paint, the best cleaners were Borax, Lysol All-Purpose Cleaner-Orange Breeze (full strength), Orange Glo Multipurpose Degreaser, and Fantastik Orange Action. RECOMMENDATIONS AND PERSPECTIVES: These results are not meant to endorse the incomplete removal of mold contaminated building materials. However, it is recognized that complete removal may not always be possible and solutions to control mold regrowth may contribute to reduced occupant exposure. Current recommendations of removal and replacement of porous building materials should be followed. It is not the intension of this discussion to endorse any product. Reporting on the performance of these products under the stated conditions was and remains the only purpose.
Mostrar más [+] Menos [-]Changes in Chlorinated Organic Pollutants and Heavy Metal Content of Sediments during Pyrolysis (7 pp)
2007
Hu, Zhanbo | Nomura, Nakao | Kong, Hainan | Wijesekara, Saman | Matsumura, Masatoshi
BACKGROUND: There has been an increasing concern about the treatment and disposal of contaminated sediment from dredged river, harbor or estuary due to the accumulated toxic organics such as dioxins and inorganics particularly heavy metals like Cr, Pb, Zn, Cu, Hg and Cd. However, considering the huge amount of materials and financial costs involved, any candidate technology must ultimately result to reusable residual by-products. This can only be made possible if the toxic pollutants are removed or stabilized in the raw sediment and then fed back into the materials cycle. Currently, we are developing a pyrolysis process for the commercial-scale cleanup of dioxins and heavy metal-contaminated river sediment to yield reusable char for various economical applications. In this connection, this paper describes our preliminary investigation into the extent of dioxins and heavy metal volatilization from actual contaminated sediment. The stabilization of certain metallic species particularly Cr ions was studied.METHODS: Laboratory scale pyrolysis experiments were conducted using a special horizontal lab-scale pyrolyzer. Sediment samples from Shanghai Suzhou Creek and Tagonoura Harbor were pyrolyzed in the reactor under nitrogen gas at 800°C and different retention times of 30, 60 and 90 min. A constant heating rate of 10°C min-1 was employed. The pyrolysis gas was first allowed to pass through a cold trap to condense the tar. Uncondensed gases were then channeled through a column containing an adsorbent (XAD-2 Resin) for dioxins. Heavy metal concentrations in the initial and final sediment residues were analyzed by ICP (Nippon Jarrel-Ash) following their acid and alkali (for Cr6+) digestion. Dioxins content of the pyrolysis char, tar, and exhaust gases in the dioxin adsorbent were also determined. For comparative purpose, thermal treatment under air flow was conducted.RESULTS: The data for the removal of heavy metals from Suzhou Creek sediment showed very significant reductions in Pb, Zn and Cr6+ content of the sediment at this condition. Percentage removals were 42.4%, 60.8% and 42.2%, respectively. The disappearance of Cr6+ was due to reduction reactions rather than volatilization since the total Cr content remained almost unchanged. Other heavy metals such as Cu, Fe and Ni showed very minimal reductions. Nonetheless, Toxicity Characteristics Leaching Procedure (TCLP) tests confirmed that these residual heavy metals were rather stable in the pyrolysis char. Reduction of toxic Cr6+ at 42.2% has also been achieved by pyrolysis (with N2) as opposed to the more than 580 % increase in Cr6+ observed during thermal oxidation (with air).DISCUSSION: Pyrolysis also remove toxic organics particularly dioxins from the sediment. For the total dioxins, removal percentage of 99.9999% was achieved even at the lowest retention time of 30 min. Almost all polychlorinated dibenzo-p-dioxine (PCDDs) and polychlorinated dibenzo-furans (PCDFs) were removed at any retention time. The TEQs detected from the solid residues were mainly contributed by dioxin-like PCBs, yet these were present in relatively trace quantities. At the shortest retention time of 30 min, only 0.000085 pg-TEQ g-1 of polychlorinated biphenyls (PCBs) was detected in the pyrolysis char. Furthermore, the residual PCBs have very low toxicity ratings and none of the highly toxic PCBs, which were initially present in the sediment such as 3,3',4,4',5-PeCB and 3,3',4,4'5,5'-HxCB, were detected in the char. Results further confirmed that most of the dioxins that were removed were transferred to the gas phase so that volatilization may be considered as the main mechanism for their removal.CONCLUSION: Some heavy metals particularly Pb and Zn can be volatilized under N2 pyrolysis at 800oC. Pyrolysis also prevented the formation of more toxic Cr6+ ions and at the same time resulted to its reduction by around 42.2% contrast to the 580% increase during thermal oxidation. PCDDs and PCDFs have been removed and were not formed in the solid products over the retention time range of 30-90 min at 800°C. Dioxin-like PCBs mostly remained and a retention time of 30 min was found sufficient for its maximum removal. RECOMMENDATIONS AND PERSPECTIVE: . With the above results, a temperature of 800oC at a retention time of 30 min is sufficient for the removal of total dioxins and some heavy metals by volatilization. It is however necessary to destroy the dioxins as well as recover heavy metals in the gas phase. Stability of remaining heavy metals in the char also needs to be confirmed by leaching tests. These are the major concerns, which we are currently evaluating to establish the feasibility of our proposed large scale pyrolysis system for sediment treatment.
Mostrar más [+] Menos [-]Analysis of the Trend and Seasonal Cycle of Carbon Monoxide Concentrations in an Urban Area (4 pp)
2007
Capilla, Carmen
BACKGROUND, AIM AND SCOPE: Air quality is an field of major concern in large cities. This problem has led administrations to introduce plans and regulations to reduce pollutant emissions. The analysis of variations in the concentration of pollutants is useful when evaluating the effectiveness of these plans. However, such an analysis cannot be undertaken using standard statistical techniques, due to the fact that concentrations of atmospheric pollutants often exhibit a lack of normality and are autocorrelated. On the other hand, if long-term trends of any pollutant's emissions are to be detected, meteorological effects must be removed from the time series analysed, due to their strong masking effects. MATERIALS AND METHODS: The application of statistical methods to analyse temporal variations is illustrated using monthly carbon monoxide (CO) concentrations observed at an urban site. The sampling site is located at a street intersection in central Valencia (Spain) with a high traffic density. Valencia is the third largest city in Spain. It is a typical Mediterranean city in terms of its urban structure and climatology. The sampling site started operation in January 1994 and monitored CO ground level concentrations until February 2002. Its geographic coordinates are W0º22'52\ N39º28'05\ and its altitude is 11 m. Two nonparametric trend tests are applied. One of these is robust against serial correlation with regards to the false rejection rate, when observations have a strong persistence or when the sample size per month is small. A nonparametric analysis of the homogeneity of trends between seasons is also discussed. A multiple linear regression model is used with the transformed data, including the effect of meteorological variables. The method of generalized least squares is applied to estimate the model parameters to take into account the serial dependence of the residuals of this model. This study also assesses temporal changes using the Kolmogorov-Zurbenko (KZ) filter. The KZ filter has been shown to be an effective way to remove the influence of meteorological conditions on O3 and PM to examine underlying trends. RESULTS: The nonparametric tests indicate a decreasing, significant trend in the sampled site. The application of the linear model yields a significant decrease every twelve months of 15.8% for the average monthly CO concentration. The 95% confidence interval for the trend ranges from 13.9% to 17.7%. The seasonal cycle also provides significant results. There are no differences in trends throughout the months. The percentage of CO variance explained by the linear model is 90.3%. The KZ filter separates out long, short-term and seasonal variations in the CO series. The estimated, significant, long-term trend every year results in 10.3% with this method. The 95% confidence interval ranges from 8.8% to 11.9%. This approach explains 89.9% of the CO temporal variations. DISCUSSION: The differences between the linear model and KZ filter trend estimations are due to the fact that the KZ filter performs the analysis on the smoothed data rather than the original data. In the KZ filter trend estimation, the effect of meteorological conditions has been removed. The CO short-term component is attributable to weather and short-term fluctuations in emissions. There is a significant seasonal cycle. This component is a result of changes in the traffic, the yearly meteorological cycle and the interactions between these two factors. There are peaks during the autumn and winter months, which have more traffic density in the sampled site. There is a minimum during the month of August, reflecting the very low level of vehicle emissions which is a direct consequence of the holiday period. CONCLUSIONS: The significant, decreasing trend implies to a certain extent that the urban environment in the area is improving. This trend results from changes in overall emissions, pollutant transport, climate, policy and economics. It is also due to the effect of introducing reformulated gasoline. The additives enable vehicles to burn fuel with a higher air/fuel ratio, thereby lowering the emission of CO. The KZ filter has been the most effective method to separate the CO series components and to obtain an estimate of the long-term trend due to changes in emissions, removing the effect of meteorological conditions. RECOMMENDATIONS AND PERSPECTIVE: Air quality managers and policy-makers must understand the link between climate and pollutants to select optimal pollutant reduction strategies and avoid exceeding emission directives. This paper analyses eight years of ambient CO data at a site with a high traffic density, and provides results that are useful for decision-making. The assessment of long-term changes in air pollutants to evaluate reduction strategies has to be done while taking into account meteorological variability.
Mostrar más [+] Menos [-]Organic Contaminants from Sewage Sludge Applied to Agricultural Soils. False Alarm Regarding Possible Problems for Food Safety? (8 pp)
2007
Laturnus, Frank | von Arnold, Karin | Grøn, Christian
GOAL, SCOPE AND BACKGROUND: Sewage sludge produced in wastewater treatment contains large amounts of organic matter and nutrients and could, therefore, be suitable as fertiliser. However, with the sludge, besides heavy metals and pathogenic bacteria, a variety of organic contaminants can be added to agricultural fields. Whether the organic contaminants from the sludge can have adverse effects on human health and wildlife if these compounds enter the food chain or groundwater still remains a point of controversial discussion. MAIN FEATURES: This paper presents an overview on the present situation in Europe and a summary of some recent results on the possible uptake of organic contaminants by crops after addition to agricultural fields by sewage sludge. RESULTS: Greenhouse experiments and field trials were performed to study the degradation and uptake of organic micro-contaminants in sludge-amended agricultural soil in crops, such as barley and carrots grown in agricultural soil amended with anaerobically-treated sewage sludge from a wastewater treatment plant, but studies hitherto have revealed no immediate risks. Common sludge contaminants such as linear alkylbenzene sulphonates (LAS), nonylphenol ethoxylates (NPE), polycyclic aromatic hydrocarbons (PAH), bis(diethylhexyl) phthalate (DEHP), showed neither accumulation in soil nor uptake in plants. DISCUSSION: It is assumed that the annual amount of sewage sludge produced in Europe will increase in the future, mainly due to larger amounts of high quality drinking water needed by an increasing population and due to increasing demands for cleaner sewage water. Application of sewage sludge to agricultural soils is sustainable and economical due to nutrient cycling and disposal of sewage sludge. However, this solution also involves risks with respect to the occurrence of organic contaminants and other potentially harmful contents such as pathogens and heavy metals present in the sludge. There have been concerns that organic contaminants may accumulate in the soil, be taken up by plants and thereby transferred to humans via the food chain. Results obtained so far revealed, however, no immediate risk of accumulation of common organic sludge contaminants in soil or uptake in plants when applying sewage sludge to agricultural soil. With very high dosages of sewage sludge, there may be a risk for accumulation of very apolar contaminants, such as DEHP, to the soil. CONCLUSIONS: Any conclusions on the safe use of sewage sludge in agriculture have to be drawn carefully, as the studies performed until now have been limited. Further studies are required, and before final statements can be drawn, it is imminent to study a larger variety of common crops and the effect sewage sludge application may have on a possible accumulation of organic contaminants in the crops. Furthermore, a larger variety of organic contaminants need to be studied and special focus should be given to contaminants newly introduced into the environment. Besides investigating possible plant uptake of organic contaminants, the fate of these compounds in soil after sludge application need to be monitored too. Here, special attention has to be given to studies on degradation and the formation of degradation products, to weathering and to leaching effects on groundwater, to the application of different crops on the same field (crop rotation), to the use of full-width tillage and strip tillage, and to long term application of sewage sludge on the soil. RECOMMENDATIONS AND PERSPECTIVE: There are environmental, political as well as economical incentives to increase the agricultural application of sludge. However, such usage should be performed with care as there are also ways in which sludge fertilisation could harm the environment and human health. Recently, a new European COST Action (859) has been established covering the field of food safety and improved food quality. Part of the Action is dealing with the application of sewage sludge in agriculture. Before any political and economical measures can be taken, the pros and cons have to be sufficiently investigated on a scientific level first.
Mostrar más [+] Menos [-]Evaluation of Organochlorine Compounds (PCDDs, PCDFs, PCBs and DDTs) in Two Raptor Species Inhabiting a Mediterranean Island in Spain (8 pp)
2007
Jiménez, Begoña | Merino, Rubén | Abad, Esteban | Rivera, Josep | Olie, Kees
BACKGROUND: Species that are at high levels of the food web have often been used as bioindicators to evaluate the presence of persistent contaminants in ecosystems. Most of these species are long-lived, so pollutant burdens may be integrated in some complex way over time. This makes them particularly sensitive to deleterious effects of Persistent Organic Pollutants (POPs). Birds have been suggested as useful organisms for monitoring pollutant levels. Traditionally such studies have been carried out with raptors such as osprey (Pandion haliaetus), peregrine falcon (Falco peregrinus), bald eagle (Haliaetus leucocephalus), etc. In this paper we present the results of a monitoring study conducted on two raptor species, osprey (Pandion haliaetus) and red kite (Milvus milvus), inhabiting a Mediterranean island (Menorca, Spain). These two species have different feeding habits; ospreys prey on fish and red kites feed on terrestrial species. This study constitutes a good opportunity to investigate if differences in feeding habits (aquatic vs. terrestrial) influences the contaminants pattern in two species inhabiting the same area. METHODS: The study was conducted in a non-destructive way, using only failed eggs, to avoid the damage of the population stability. Eggs were collected during the period 1994–2000. The contaminants examined were dichlorodiphenyltrichloroethanes (DDTs, including DDT and its main metabolite, DDE), polychlorinated biphenyls (PCBs), including ortho PCBs (PCBs with at least one Chlorine atom in the ortho position): #28, 52, 95, 101, 123+149, 118, 114, 153, 132+105, 138, 167, 156, 157, 180, 170, 189, 194; and non ortho PCBs (PCBs with no Chlorine atom in the ortho position): #77, 126, 169 and all the polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) with Chlorine atoms at the 2,3,7 and 8 position (2,3,7,8-substituted PCDDs and PCDFs). The analysis of organochlorine compounds was performed using a sample treatment based on a Solid Phase Matrix Dispersion procedure. Ortho PCBs and DDTs were determined by HRGC-µECD; non ortho PCBs and PCDD/Fs were determined by HRGC-HRMS. RESULTS AND DISCUSSION: The sum of the ortho PCB congeners analysed ranged from 0.94 to 15.03 µg/g wet weight (ww) for ospreys and from 1.0 to 11.2 µg/g ww for red kites. In both species, PCB congeners #153, #138 and #180 accounted about 75% to total ortho PCB concentrations. Regarding non ortho PCBs, for ospreys, concentrations ranged from 0.16 to 1.39 ng/g wet weight (ww) and for red kites from 0.12 to 0.51 ng/g ww, being congener #126 the most abundant. Concerning DDTs, concentration for ospreys ranged from 0.07 to 1.03 µg/g ww; and for red kites ranged from 0.90 to 2.10 µg/g ww, representing DDE more than 95% of the total DDTs, which proves a past use of DDT in the study area. Differences in contaminant levels between species are probably associated to feeding habits. The fish-eating species presents the highest PCB levels, whereas the terrestrial species exhibits the highest DDT levels. PCDD/Fs in ospreys were in the range 2.6–14.2 pg/g ww, while in red kites the range was slightly wider (22.2–43.2 pg/g ww), being PCDDs the major contributors in black kites. Ospreys had PCDDs similar to PCDF concentrations. PCDD/F profiles were mostly influenced by OCDD in both species. Non ortho PCBs were the major contributors to calculated Toxic Equivalent Quantity (TEQs) in both species. CONCLUSION: In both species studied, ortho-PCBs could represent a problem of concern since 57% of the eggs exhibited levels higher than 4 µg/g ww, reported as the level that could cause reduced hatchability, embryo mortality, and deformities in birds. RECOMMENDATIONS AND OUTLOOK: Results found in this study suggest that a more detailed study to clear up possible deleterious effects of PCBs on the bird populations studied here should be done.
Mostrar más [+] Menos [-]Fractionation and mobility of phosphorus in a sandy forest soil amended with biosolids
2007
Su, Jingjun | Wang, Hailong | Kimberley, M. O. (Mark O.) | Beecroft, Katie | Magesan, Guna N. | Hu, Chengxiao
GOAL, SCOPE AND BACKGROUND: Biosolids, i.e., treated sewage sludge, are commonly used as a fertilizer and amendment to improve soil productivity. Application of biosolids to meet the nitrogen (N) requirements of crops can lead to accumulation of phosphorus (P) in soils, which may result in P loss to water bodies. Since 1996, biosolids have been applied to a Pinus radiata D. Don plantation near Nelson City, New Zealand, in an N-deficient sandy soil. To investigate sustainability of the biosolids application programme, a long-term research trial was established in 1997, and biosolids were applied every three years, at three application rates, including control (no biosolids), standard and high treatments, based on total N loading. The objective of this study was to evaluate the effect of repeated application of biosolids on P mobility in the sandy soil. MATERIALS AND METHODS: Soil samples were collected in August 2004 from the trial site at depths of 0–10, 10–25, 25–50, 50–75, and 75–100 cm. The soil samples were analysed for total P (TP), plant-available P (Olsen P and Mehlich 3 P), and various P fractions (water-soluble, bioavailable, Fe and Al-bound, Ca-bound, and residual) using a sequential P fractionation procedure. RESULTS AND DISCUSSION: Soil TP and Olsen P in the high biosolids treatment (equivalent to 600 kg N ha⁻¹ applied every three years) had increased significantly (P<0.05) in both 0–10 cm and 10–25 cm layers. Mehlich 3 P in soil of the high treatment had increased significantly only at 0–10 cm. Olsen P appeared to be more sensitive than Mehlich 3 P as an indicator of P movement in a soil profile. Phosphorus fractionation revealed that inorganic P (Al/Fe-bound P and Ca-bound P) and residual P were the main P pools in soil, whereas water-soluble P accounted for approximately 70% of TP in biosolids. Little organic P was found in either the soil or biosolids. Concentrations of water-soluble P, bioavailable inorganic P (NaHCO₃ Pi) and potentially bioavailable inorganic P (NaOH Pi) in both 0–10 and 10–25 cm depths were significantly higher in the high biosolids treatment than in the control. Mass balance calculation indicated that most P applied with biosolids was retained by the top soil (0–25 cm). The standard biosolids treatment (equivalent to 300 kg N ha⁻¹ applied every three years) had no significant effect on concentrations of TP, Mehlich 3 P and Olsen P, and P fractions in soil. CONCLUSIONS: The results indicate that the soil had the capacity to retain most biosolids-derived P, and there was a minimal risk of P losses via leaching in the medium term in the sandy forest soil because of the repeated biosolids application, particularly at the standard rate. RECOMMENDATIONS AND PERSPECTIVES: Application to low-fertility forest land can be used as an environmentally friendly option for biosolids management. When biosolids are applied at a rate to meet the N requirement of the tree crop, it can take a very long time before the forest soil is saturated with P. However, when a biosolids product contains high concentrations of P and is applied at a high rate, the forest ecosystem may not have the capacity to retain all P applied with biosolids in the long term.
Mostrar más [+] Menos [-]An Estimate of Biogenic Emissions of Volatile Organic Compounds during Summertime in China (7 pp)
2007
BACKGROUND AND AIM: An accurate estimation of biogenic emissions of VOC (volatile organic compounds) is necessary for better understanding a series of current environmental problems such as summertime smog and global climate change. However, very limited studies have been reported on such emissions in China. The aim of this paper is to present an estimate of biogenic VOC emissions during summertime in China, and discuss its uncertainties and potential areas for further investigations. MATERIALS AND METHODS: This study was mainly based on field data and related research available so far in China and abroad, including distributions of land use and vegetations, biomass densities and emission potentials. VOC were grouped into isoprene, monoterpenes and other VOC (OVOC). Emission potentials of forests were determined for 22 genera or species, and then assigned to 33 forest ecosystems. The NCEP/NCAR reanalysis database was used as standard environmental conditions. A typical summertime of July 1999 was chosen for detailed calculations. RESULTS AND DISCUSSION: The biogenic VOC emissions in China in July were estimated to be 2.3×1012gC, with 42% as isoprene, 19% as monoterpenes and 39% as OVOC. About 77.3% of the emissions are generated from forests and woodlands. The averaged emission intensity was 4.11 mgC m-2 hr-1 for forests and 1.12 mgC m-2 hr-1 for all types of vegetations in China during the summertime. The uncertainty in the results arose from both the data and the assumptions used in the extrapolations. Generally, uncertainty in the field measurements is relatively small. A large part of the uncertainty mainly comes from the taxonomic method to assign emission potentials to unmeasured species, while the ARGR method serves to estimate leaf biomass and the emission algorithms to describe light and temperature dependence. CONCLUSIONS: This study describes a picture of the biogenic VOC emissions during summertime in China. Due to the uneven spatial and temporal distributions, biogenic VOC emissions may play an important role in the tropospheric chemistry during summertime. RECOMMENDATIONS AND PERSPECTIVE: Further investigations are needed to reduce uncertainties involved in the related factors such as emission potentials, leaf biomass, species distribution as well as the mechanisms of the emission activities. Besides ground measurements, attention should also be placed on other techniques such as remote-sensing and dynamic modeling. These new approaches, combined with ground measurements as basic database for calibration and evaluation, can hopefully provide more comprehensive information in the research of this field.
Mostrar más [+] Menos [-]Simulated Effects of Acidic Solutions on Element Dynamics in Monsoon Evergreen Broad-leaved Forest at Dinghushan, China - Part 1: Dynamics of K, Na, Ca, Mg and P (7 pp)
2007
Liu, Juxiu
Background, Aim and Scope Acid deposition has become a concern in south China in recent years. This phenomenon has increased to a dramatic extent with the large use of cars and coal- fueled power plants. As a consequence, soils are becoming acidified and their element dynamics will change. A decrease in the nutrient availability will lead to slower plant growth and maybe to a change in the forest type with current species being replaced by new ones with less nutrient requirements. Because of these reasons, it is important to understand how the dynamics of elements will change and what mechanism is part of the process. This knowledge is important for modeling the acidification process and either finding ways to counter it or to predict its consequences. The primary purpose of this study was to provide information about how the dynamics of K, Na, Ca, Mg and P are affected by acid deposition in a typical forest in southern China. Materials and Methods: Experimental soils and saplings were collected directly from the monsoon evergreen broad-leaved forest in Dinghushan. All saplings were transplanted individually into ceramic pots in August 2000 and placed in an open area near their origin site. Pot soils were treated weekly from October, 2000 to July, 2002 with an acidic solution at pH 3.05, pH 3.52, pH 4.00 or pH 4.40, or with tap water as a control. The concentrations of SO42-, NO3-, K+, Na+, Ca2+, Mg2+ and available P and the pH were measured in soil and leachate samples taken at different times. The sapling leaves were collected and their element concentrations were measured at the end of the experiment. Results: Concentrations of soil exchangeable Ca and Mg decreased quickly over time, although only Ca showed changes with the acidic solution treatment and soil exchangeable K was stable because of soil weathering. Leaching of K, Mg and Ca was dependent upon the treatment acidity. Soil available P decreased slowly without any correlation with the acidity of the treatment. All the NO3- added by the treatment was taken up by the plants, but the SO42- added accumulated in the soil. Discussion: Amongst the plant species, Schima superba was little affected by the treatment, the leaf P content was affected in Acmena acuminatissima plants and Cryptocarya concinna was the most susceptible species to soil acidification, with a marked decrease of the leaf K, Ca and Mg concentrations when the treatment acidity increased. Conclusions: Simulated acid deposition affected the dynamics of K, Ca and Mg in the monsoon evergreen broad-leaved forest. The dynamics of Ca in the soil and of K, Mg and Ca in the soil leachates were affected by the acidic solution treatment. If such a soil acidification occurs, Cryptocarya concinna will be amongst the first affected species, but Schima superba will be able to sustain a good growth and mineral nutrition. Recommendations and Perspectives: Acid deposition will lead to imbalance the nutrient elements in the evergreen broad-leaved forest because of accelerated leaching losses of soil exchangeable Ca and Mg. Measures should be developed to slow down soil acidification or nutrient decrease.
Mostrar más [+] Menos [-]Production of Ethanol by an Integrated Valorization of Olive Oil Byproducts. The Role of Phenolic Inhibition (2 pp)
2007
Zanichelli, Dario | Carloni, Francesco | Hasanaj, Ermal | D’Andrea, Nausica | Filippini, Alexander | Setti, Leonardo
BACKGROUND, AIM AND SCOPE: Agricultural industrial wastes can frequently be used as raw materials in the production of bio-fuels. Olive-oil milling wastewater is considered as one of the most polluting agro-industrial residues, but fortunately due to its high content of organic matter, it has the potential to be a valuable starting material to obtain bio-ethanol via fermentation with Saccharomyces cerevisiae. The fermentation of olive-oil milling wastewater has been demonstrated with good yield of ethanol (8-12%v/v) once the level of reducing sugars is appropriate and the phenolic fraction, which inhibits the yeast, is removed.Materials and Methods:-Results:-Discussion:-Conclusions:-Recommendations and Perspectives:-
Mostrar más [+] Menos [-]Biological Activity in a Heavily Organohalogen-Contaminated River Sediment (8 pp)
2007
Bunge, Michael | Kähkönen, Mika A. | Rämisch, Winfried | Opel, Matthias | Vogler, Susanne | Walkow, Fred | Salkinoja-Salonen, Mirja | Lechner, Ute
BACKGROUND, AIMS AND SCOPE: Sediments of the Spittelwasser creek are highly polluted with organic compounds and heavy metals due to the discharge of untreated waste waters from the industrial region of Bitterfeld-Wolfen, Germany over the course of more than one century. However, relatively few data have been published about the chloroorganic contamination of the sediment. This paper reports on the content of different (chloro)organic compounds with special emphasis on polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F), and chlorobenzenes. Existing concepts for the remediation of Spittelwasser sediment include the investigation of natural attenuation processes, which largely depend on the presence of an intact microbial food web. In order to gain more insight in terms of biological activity, we analyzed the capacity of sediment microflora to degrade organic matter by measuring the activities of extracellular hydrolytic enzymes involved in the biogeochemical cycling of carbon, nitrogen, phosphorus and sulfur. Furthermore, the detection of physiologically active bacteria in the sediment, particularly of those known for their capability to reductively dehalogenate organochlorine compounds, illustrates the potential for intrinsic bioremediation processes. METHODS: PCDD/F and chlorobenzenes were analyzed by gas chromatography(GC)/mass spectrometry and GC/flame ionization detection, respectively. The activities of hydrolytic enzymes were determined from freshly sampled sediment layers using 4-methylumbelliferyl (MUF) or 7-amino-4-methylcoumarin-conjugated model compounds and kinetic fluorescence measurements. Physiologically active bacteria from different sediment layers were microscopically visualized by fluorescence in situ hybridization (FISH). Specific bacteria were identified by 16S rRNA gene amplification and sequencing. RESULTS AND DISCUSSION: The PCDD/F congener profile was dominated by dibenzofurans. In addition, the presence of specific tetra and pentachlorinated dibenzofurans supported the assumption that extensive magnesium production was one possible source for the high contamination. A range of other chloroorganic compounds, including several isomers of chlorobenzenes, hexachlorocyclohexane and 1,1,1-trichloro-2,2-bis (p-chlorophenyl)ethane (DDT), was present in the sediment. Activities of extracellular hydrolytic enzymes showed a strong decrease in those sediment layers that were characterized by high contents of absorbable organic halogen (AOX), indicating disturbed organic matter decay. Interestingly, an abnormal increase of cellulolytic enzyme activities below the organochlorine-rich layers was observed, possibly caused by residual cellulose from discharges of sulfite pulping wastes. FISH revealed physiologically active bacteria in most sediment layers from the surface down to the depth of about 60 cm, including members of Desulfitobacterium (D.) and Sulfurospirillum. The presence of D. dehalogenans was confirmed by its partial 16S rRNA gene sequence. CONCLUSION: Results of chemical sediment analyses demonstrated high loads of organochlorine compounds, particularly of PCDD/F. Several years after stopping the waste water discharge to Spittelwasser creek, this sediment remains a main source for pollution of the downstream river system by way of the ongoing mobilization of sediment during high floods. As indicated by our enzyme activity measurements, the decomposition potential for organic matter is low in organochlorine-rich sediment layers. In contrast, the comparably higher enzyme activities in less organochlorine-polluted sediment layers as well as the presence of physiologically active bacteria suggest a considerable potential for natural attenuation. RECOMMENDATIONS AND PERSPECTIVE: From our data we strongly recommend to explore the degradative capacity of sediment microorganisms and the limits for in situ activity towards specific sediment pollutants in more detail. This will give a sound basis for the integration of bioremediation approaches into general concepts to reduce the risk that permanently radiates from this highly contaminated sediment.
Mostrar más [+] Menos [-]