Refinar búsqueda
Resultados 381-390 de 683
Assessing Riparian Floristic Diversity and Vegetation Dynamics in the Vamanapuram River Basin, Kerala: A Comprehensive Analysis Texto completo
2024
M. V. Vincy and R. Brilliant
The Vamanapuram River Basin (VRB) is home to a diverse range of plant species, including 152 distinct species from 50 botanical families. Poaceae, Leguminosae, Araceae, and Aseraceae are the most abundant, with 13 species. Euphorbiaceae, Acanthaceae, Apocynaceae, and Rubiaceae also contribute to the biodiversity hotspots. The VRB’s vegetation profile is characterized by a dynamic interplay of plant forms and ecological niches, with 74 herbs, 30 shrubs, 12 grasses, 1 liana, and 35 towering trees. The Poaceae family thrives in this environment due to hydrological factors. The sampling sites P6 and P5 exhibit high relative frequency and density, with key species like Macaranga peltata, Ficus hispida, and Swietenia macrophylla. Diversity indices like the Shannon-Wiener diversity index reaffirm the VRB’s tropical forest character. Beta-diversity patterns reveal unique plant species distribution dynamics among different panchayaths, emphasizing their ecological complexities. The study emphasizes the demand for specialized management and conservation techniques in this environmentally active region.
Mostrar más [+] Menos [-]A Comprehensive Study of Remote Sensing Technology for Agriculture Crop Monitoring Texto completo
2024
R. Sathiya Priya and U. Rahamathunnisa
With the rapid advancement of Remote Sensing Technology, monitoring the agricultural land has become a facile task. To surveil the growth of paddy crops and provide detailed information regarding monitoring soil, drought, crop type, crop growth, crop health, crop yield, irrigation, and fertilizers, different types of remote sensing satellites are used like Landsat 8, Sentinel 2, and MODIS satellite. The main aim of Landsat 8, Sentinel 2 and MODIS satellites is to monitor the land and vegetation area and to provide data regarding agricultural activities. Each of these satellites possesses a different spectral band, resolution, and revisit period. By using the remote sensing spectral indices, different types of vegetation indices are calculated. This survey paper provides comprehensive about Remote Sensing and the major parameters that influence for growth of paddy crops, like soil and water, and the future scope of agriculture and its demand in research is discussed.
Mostrar más [+] Menos [-]Transforming Energy Access: The Role of Micro Solar Dome in Providing Clean Energy Lighting in Rural India Texto completo
2024
R. Karthik, Ramya Ranjan Behera, Uday Shankar, Priyadarshi Patnaik and Rudra Prakash Pradhan
Access to affordable and reliable energy sources can substantially enhance the lives of marginalized communities in rural areas. Unfortunately, numerous households in these communities rely upon unclean sources of energy such as kerosene to light the house even during daylight. To address this issue, solar off-grid technology - Micro Solar Dome (MSD) was implemented in various states across India, specifically benefiting the scheduled caste and scheduled tribe communities. The study, across the eight selected states, highlights the advantages of adopting off-grid technologies and their roles in promoting awareness of renewable energy solutions. The survey used purposive sampling to collect community members’ perceptions of the product’s benefits and their awareness of renewable technologies. The results indicated that the utilization of the product not only enhanced illumination levels within households but also contributed to improved safety, increased study hours for children, and facilitated economic activities during the evening hours. Furthermore, the study revealed that education plays a crucial role in adopting solar energy. However, interventions such as awareness programs and hands-on experiences with the products can also greatly enhance awareness and promote adoption in rural areas. Overall, the study provided compelling evidence of the significant and positive impact that small-scale initiatives like the MSD can have on the lives of marginalized communities. It also emphasized the potential of such solutions to empower these communities and improve their overall well-being.
Mostrar más [+] Menos [-]Experimental Investigations on the Effect of Pretreatment in Anaerobic Digestion of Coir Pith Agro Waste Texto completo
2024
Smitha Krishna Warrier and P. Sindhu
The coir industry in India’s southern coastal regions, especially in the state of Kerala, is becoming increasingly concerned about the environmental impact of the accumulation and incremental increase of coir pith each year. The objective of this study was to assess the effect of pretreatment on the anaerobic digestion of coir pith. The characterization study of coir pith shows high organic content, which can be anaerobically digested to produce biogas. But, the high lignin content (30.91%) makes the process slow. To overcome this, a biological pretreatment method was tried using two microbial cultures belonging to fungal genera known to be lignin decomposers, viz., Trichoderma and Pleurotus. By using Trichoderma, lignin content was reduced by 3.7%, and the maximum gas production was obtained in a shorter time (19 days) in comparison with the sample without any pretreatment (24 days). When Pleurotus was used for lignin degradation, the lignin content was reduced by 6.78%, and the maximum gas production was obtained in a much shorter time period (14 days) in comparison with the former two methods. The gas produced comprises 74 ppm of methane, which has fuel value. The sludge after digestion was tested, which indicated a marginal increase in NPK value and hence can be used as fertilizer. The results of the study appear to be quite promising in the transition towards green energy by providing scope for the process of biomethanation, with the conclusion that further research can transform coir pith into a good renewable energy resource.
Mostrar más [+] Menos [-]Enhanced Solar Photovoltaic Power Production Approach for Electric Vehicle Charging Station: Economic and Environmental Aspects Texto completo
2024
J. Techo, S. Techo, A. Palamanit, E. Saniso, A. A. Chand and P. Prasannaa
In recent years, Electric Vehicles (EVs) are contributing a major share in Thailand and benefit the environment. Most of the EV charging stations are sourced from solar energy as it becomes a carbon-free source of energy production. Secondly, Thailand is rich in solar irradiance, and higher irradiance leads to higher power production. On the other hand, in tropical conditions, solar Photovoltaic (PV) module temperature increases following the solar irradiance due to high ambient temperature, resulting negative impact on the efficiency and lifespan of photovoltaic (PV) modules. Further, to increase PV power production, in this study, different rates of cooling strategies are proposed. The study found that reducing the temperature by 5% to 25% resulted in increased average power outputs of 5947.94W, 6021.43W, 6094.92W, 6168.41W, and 6241W, respectively. Notably, 25% of the cooling rate achieved higher production. However, it is lower than the nominal power production. Following that, economic analysis and environmental impacts are analyzed for Thailand’s EV charging station using a different cooling rate of PV module. Overall, it is concluded that, depending on the economic viability of the EV charging station, cooling technology can be applied, and it will benefit the EV charging station both economically and environmentally. To further enhance the solar PV power production approach for EV charging stations in Thailand, it is imperative to prioritize future endeavors towards optimizing cooling technology, integrating energy storage, and implementing supportive policies.
Mostrar más [+] Menos [-]Feasibility Analysis of Municipal Wastewater Reinjection Technology Texto completo
2024
Haijie Hu, Huan Zhang, Lei Han, Le Zhang, Tao Yu and Chengtun Qu
To study the feasibility of using municipal sewage as a reserve water source for oilfield reinjection, the water sample treated by the municipal sewage treatment plant and the produced water of the Chang 2 reservoir were taken as the research objects. Through the analysis of water quality and compatibility, the optimal ratio of reinjection water samples was determined. At the same time, the clay swelling experiment and reservoir damage experiment were carried out. The experimental results show that the salinity of municipal sewage is low, and the content of scale ions is low. When the ratio of produced water to municipal sewage is 7:3, the scale formation amount can reach 42.5 mg.L-1, and when the scale inhibitor is added, the scale formation amount can be reduced to 10.4 mg.L-1. The mixed water sample will not cause clay expansion. Meanwhile, Chang 2 reservoir is moderately weak water sensitive and weak acid sensitive. The oil content, suspended solids content, and median particle size of the mixed water sample during reinjection should be controlled at 5 mg.L-1, 5 mg.L-1, and 5 μm to ensure that the reinjected water sample does not cause damage to the reservoir.
Mostrar más [+] Menos [-]Sustainability Analysis of Landfill Cover System Constructed Using Recycled Waste Materials by Life Cycle Assessment Texto completo
2024
G. Sanoop, Sobha Cyrus and G. Madhu
The sustainability of using industrial by-products for the construction of landfill cover was determined using Life Cycle Assessment (LCA). LCA was carried out on four materials: sand- bentonite mix, red earth- bentonite mix (amended soil), Waste Foundry Sand (WFS)- Bentonite mix, and WFS- marine clay mix. The former two are commonly used cover soils and the latter two are alternative materials proposed. Environmental impacts based on the extraction of resources, processing, transportation to the site, and site preparation were considered using the ‘cradle to site’ approach. Analysis was carried out in OpenLCA software using the ReCiPe (H) Midpoint method of impact assessment. Required data for analysis was taken from the Ecoinvent database supplemented with inputs from a field survey. The use of WFS in landfill cover systems was found to be sustainable using LCA studies when compared to conventional materials.
Mostrar más [+] Menos [-]Evaluation of the Contaminated Area Using an Integrated Multi-Attribute Decision-Making Method Texto completo
2024
A. Mohamed Nusaf and R. Kumaravel
Air pollution affects public health and the environment, creating great concern in developed and developing countries. In India, there are numerous reasons for air pollution, and festivals like Diwali also contribute to air contamination. Determining the polluted region using several air contaminants is significant and should be analyzed carefully. This study aims to analyze the air quality in Tamil Nadu, India, during the Diwali festival from 2019 to 2021, based on multiple air pollutants. The study models the impact of air pollution as a Multi-Attribute Decision-Making (MADM) problem. It introduces a hybrid approach, namely the Analytical Hierarchy Process-Entropy-VlseKriterijumska Optimizacija I Kompromisno Resenje (AHP-Entropy-VIKOR) model, to analyze and rank the areas based on the quality of air. A combined approach of AHP and entropy is employed to determine the weights of multiple air pollutants. The VIKOR approach ranks the areas and identifies the areas with the worst air quality during the festival. The proposed model is validated by performing the Spearman’s rank correlation with two existing MADM methods: Combinative Distance Based Assessment (CODAS) and Weighted Aggregates Sum Product Assessment (WASPAS). Sensitivity analysis is carried out to assess the effects of the priority weights and the dependency of the pollutants in ranking the regions. The highest air pollution level during the festival was seen in Cellisini Colony (2019), Rayapuram (2020), T. Nagar and Triplicane (2021) in their respective year. The results demonstrate the consistency and efficiency of the proposed approach.
Mostrar más [+] Menos [-]Water Resource Impacts of Irrigation: The Case of the Main Irrigation Canal from the M’Pourie Plain to Rosso in Mauritania Texto completo
2024
Mewgef El Ezza dite Hanane Djieh Cheikh Med Fadel B. A. Dick, E. C. S’Id, M. B. Ammar, Y. M. Sidi, L. S. Mohamed, A. Semesdy, M. L. Yehdhih and M. Fekhaoui
An important factor in determining agricultural production is the availability of irrigation water in the main canal of the M’Pourie plain. This factor affects both the intensification of crops and the size of the irrigation areas. The main Senegal River canal in Rosso, Mauritania, runs across the Plaine of M’Pourie. This study aims to assess the physicochemical quality of the water used for irrigation and agriculture in the main irrigation canal on the M’Pourie plain. The measurements were made from 2021 to 2022, and the following physical and chemical parameters were monitored: pH, temperature, electrical conductivity, salt content, calcium, magnesium, sodium, and potassium; ammonium bicarbonate; chloride; nitrite; nitrate; nitrogen; sulfate; and sodium adsorption ratio (SAR). These measurements were analyzed using volumetric, spectroscopic, and spectrophotometric methods. After conducting statistical analysis and comparing the results with Moroccan quality standards for surface water utilized in irrigation, it has been discovered that the average pH value is 7.51, indicating a neutral state. However, the average nitrite and ammonium values exceed Moroccan standards at 5.16 mg.L-1 and 0.41 mg.L-1, respectively. The water’s low mineralization is attributed to its low electrical conductivity, with an average of 52.2 μS.cm-1. Based on the analysis of the Senegal River water used for irrigation in the M’Pourie plain, it has been determined that its sodium adsorption ratio and electrical conductivity classify it as belonging to class C1S1. This indicates that the water has low salinity and is excellent for irrigation, with a low risk of alkalinization.
Mostrar más [+] Menos [-]Recent Progress of Novel Porous Materials in Wastewater Treatment Texto completo
2024
Deqi Kong, Hua Chen, Zhen Xiang and Bin Wang
Unavoidably, the expansion of industry causes the release of numerous heavy metals, radionuclides, and organic pollutants into the environment. Due to these pollutants, the extremely toxic, highly carcinogenic chemicals provide a serious risk to people and aquatic life. Wastewater pollutants must be removed to safeguard the ecology. A huge specific surface area, multiple binding sites, a plethora of functional groups, variable pore size, and simplicity of surface modification are just a few advantages of porous materials. They are considered viable candidate materials for the efficient and selective removal of contaminants from aqueous solutions in a range of difficult circumstances due to their benefits. This work reviews the characteristics, methods of functionalization, and ways of modification of many novel porous materials in recent years. The use of these porous materials in the treatment of wastewater was examined. The development potential of porous materials is finally summed up.
Mostrar más [+] Menos [-]