Refinar búsqueda
Resultados 3921-3930 de 62,595
A generalized machine learning approach for dissolved oxygen estimation at multiple spatiotemporal scales using remote sensing Texto completo
2021
Guo, Hongwei | Huang, Jinhui Jeanne | Zhu, Xiaotong | Wang, Bo | Tian, Shang | Xu, Wang | Mai, Youquan
Dissolved oxygen (DO) is an effective indicator for water pollution. However, since DO is a non-optically active parameter and has little impact on the spectrum captured by satellite sensors, research on estimating DO by remote sensing at multiple spatiotemporal scales is limited. In this study, the support vector regression (SVR) models were developed and validated using the remote sensing reflectance derived from both Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) data and synchronous DO measurements (N = 188) and water temperature of Lake Huron and three other inland waterbodies (N = 282) covering latitude between 22–45 °N. Using the developed models, spatial distributions of the annual and monthly DO variability since 1984 and the annual monthly DO variability since 2000 in Lake Huron were reconstructed for the first time. The impacts of five climate factors on long-term DO trends were analyzed. Results showed that the developed SVR-based models had good robustness and generalization (average R² = 0.91, root mean square percentage error = 2.65%, mean absolute percentage error = 4.21%), and performed better than random forest and multiple linear regression. The monthly DO estimates by Landsat and MODIS data were highly consistent (average R² = 0.88). From 1984 to 2019, the oxygen loss in Lake Huron was 6.56%. Air temperature, incident shortwave radiation flux density, and precipitation were the main climate factors affecting annual DO of Lake Huron. This study demonstrated that using SVR-based models, Landsat and MODIS data could be used for long-term DO retrieval at multiple spatial and temporal scales. As data-driven models, combining spectrum and water temperature as well as extending the training set to cover more DO conditions could effectively improve model robustness and generalization.
Mostrar más [+] Menos [-]A review on pesticides in flower production: A push to reduce human exposure and environmental contamination Texto completo
2021
Pereira, Patrícia C.G. | Parente, Cláudio E.T. | Carvalho, Gabriel O. | Torres, João P.M. | Meire, Rodrigo O. | Dorneles, Paulo R. | Malm, Olaf
In several countries, flower import regulations are restricted to food security, by establishing maximum residue limits (MRL) for pesticides in flower-based food products and biosafety, in order to limit the circulation of vectors, pests and exotic species across borders. In this context, the lack of limits on pesticides in flower-products for ornamental purposes can influence the pesticide overuse in production areas, as well as the transfer of contaminated products between countries. Therefore, the purpose of this review was to discuss possible adverse effects on human and environmental health of pesticides used in floriculture, evaluating regulations on the use of these pesticides in the main importing and flower-producing countries. This review included 92 documents. The use of 201 compounds was identified by interviews and analytical measurements. Among them, 93 are banned by the European Union (EU), although 46.3 % of these compounds have been identified in samples from European countries. Latin American countries have a large number of scientific publications on pesticides in flower production (n = 51), while the EU and China have less studies (n = 24) and the United States and Japan have no studies. Regarding adverse health effects, poorer neurobehavioral development, reproductive disorders, congenital malformations and genotoxicity have been reported for residents of flower production areas and workers throughout the flower production cycle. Studies including water samples show overuse of pesticides, while environmental impacts are related to water and air contamination, soil degradation and adverse effects on the reproduction and development of non-target organisms. This review points out that the absence of MRL for non-edible flowers can be crucial for the trade of contaminated products across borders, including pesticides banned in importing countries. Furthermore, setting limits on flowers could reduce the use of pesticides in producing countries.
Mostrar más [+] Menos [-]Iron-carbon material enhanced electrokinetic remediation of PCBs-contaminated soil Texto completo
2021
Song, Yan | Lei, Cheng | Yang, Kun | Lin, Daohui
The high toxicity and persistence of polychlorinated biphenyls (PCBs) in the environment demands the development of effective remediation for PCBs-contaminated soils. In this study, electrokinetic (EK) remediation integrated with iron-carbon material (Fe/C) was established and used to remediate PCB28 (1 mg kg⁻¹) contaminated soil under a voltage gradient of 1 V cm⁻¹. Effects of Fe/C dosage, soil type, and remediation time were investigated. The operational condition was optimized as 4 g kg⁻¹ Fe/C, yellow soil, and 14 d-remediation, achieving PCB28 removal efficiency of 58.6 ± 8.8% and energy utilization efficiency of 146.5. Introduction of EK-Fe/C did not significantly affect soil properties except for slight soil moisture content increase and total Fe content loss. Soil electrical conductivity exhibited an increasing trend from anode to cathode attributed to EK-induced electromigration and electroosmosis. EK accelerated the corrosion and consumption of reactive Fe⁰/Fe₃C in Fe/C by generating acid condition. Fe/C in turn effectively prevented EK-induced soil acidification and maintained soil neutral to weak alkaline condition. A synergistic effect between EK and Fe/C was revealed by the order of PCB28 removal efficiency-EK-Fe/C (58.6 ± 8.8%) > EK (37.7 ± 1.6%) > Fe/C (6.8 ± 5.0%). This could be primarily attributed to EK and Fe/C enhanced Fenton reaction, where EK promoted Fe/C dissolution and H₂O₂ generation. In addition to oxidation by Fenton reaction generated ·OH, EK-mediated electrochemical oxidation, Fe/C-induced reduction and migration of Fe/C adsorbed PCBs were all significant contributors to PCB28 removal in the EK-Fe/C system. These findings suggest that the combination of EK and Fe/C is a promising technology for remediation of organics-contaminated soil.
Mostrar más [+] Menos [-]Integration of environmental metabolomics and physiological approach for evaluation of saline pollution to rice plant Texto completo
2021
Ma, Nyuk Ling | Lam, Su Datt | Che Lah, Wan Afifudeen | Aḥmad, ʻAzīz | Rinklebe, Jörg | Sonne, Christian | Peng, Wanxi
Salinisation of soil is associated with urban pollution, industrial development and rising sea level. Understanding how high salinity is managed at the plant cellular level is vital to increase sustainable farming output. Previous studies focus on plant stress responses under salinity tolerance. Yet, there is limited knowledge about the mechanisms involved from stress state until the recovery state; our research aims to close this gap. By using the most tolerance genotype (SS1-14) and the most susceptible genotype (SS2-18), comparative physiological, metabolome and post-harvest assessments were performed to identify the underlying mechanisms for salinity stress recovery in plant cells. The up-regulation of glutamine, asparagine and malonic acid were found in recovered-tolerant genotype, suggesting a role in the regulation of panicle branching and spikelet formation for survival. Rice could survive up to 150 mM NaCl (∼15 ds/m) with declined of production rate 5–20% ranged from tolerance to susceptible genotype. This show that rice farming may still be viable on the high saline affected area with the right selection of salt-tolerant species, including glycophytes. The salt recovery biomarkers identified in this study and the adaption underlined could be empowered to address salinity problem in rice field.
Mostrar más [+] Menos [-]Long-term variability in base cation, sulfur and nitrogen deposition and critical load exceedance of terrestrial ecosystems in China Texto completo
2021
Zhao, Wenxin | Zhao, Yu | Ma, Mingrui | Chang, Ming | Duan, Lei
The rapid development of China's industrial economy and implementation of air pollution controls have led to great changes in sulfur (S), nitrogen (N) and base cation (BC) deposition in the past three decades. We estimated China's anthropogenic BC emissions and simulated BC deposition from 1985 to 2015 with a five-year interval using a multilayer Eulerian model. Deposition of S and N from 2000 to 2015 with a five-year interval was simulated with the EMEP MSC-W model and the Multi-resolution Emission Inventory of China (MEIC). The critical load (CL) and its exceedance were then calculated to evaluate the potential long-term acidification risks. From 1985 to 2005, the BC deposition in China was estimated to have increased by 16 % and then decreased by 33 % till 2015. S deposition was simulated to increase by 49 % from 2000 to 2005 and then decrease by 44 % in 2015, while N deposition increased by 32 % from 2000 to 2010 with a limited reduction afterward. The maximum CL of S was found to increase in 67 % of mainland China areas from 1985 to 2005 and to decline in 55 % of the areas from 2005 to 2015, attributed largely to the changed BC deposition. Consistent with the progress of national controls on SO₂ and NOX emissions, the CL exceedance of S increased from 2.9 to 4.6 Mt during 2000–2005 and then decreased to 2.5 Mt in 2015, while that of N increased from 0.4 in 2000 to 1.2 Mt in 2010 and then decreased to 1.1 Mt in 2015. The reduced BC deposition due to particle emission controls partially offset the benefit of SO₂ control on acidification risk reduction in the past decade. It demonstrates the need for a comprehensive strategy for multi-pollutant control against soil acidification.
Mostrar más [+] Menos [-]Stigmasterol root exudation arising from Pseudomonas inoculation of the duckweed rhizosphere enhances nitrogen removal from polluted waters Texto completo
2021
Lu, Yufang | Kronzucker, Herbert J. | Shi, Weiming
Rhizospheric microorganisms such as denitrifying bacteria are able to affect ‘rhizobioaugmention’ in aquatic plants and can help boost wastewater purification by benefiting plant growth, but little is known about their effects on the production of plant root exudates, and how such exudates may affect microorganismal nitrogen removal. Here, we assess the effects of the rhizospheric Pseudomonas inoculant strain RWX31 on the root exudate profile of the duckweed Spirodela polyrrhiza, using gas chromatography/mass spectrometry. Compared to untreated plants, inoculation with RWX31 specifically induced the exudation of two sterols, stigmasterol and β-sitosterol. An authentic standard assay revealed that stigmasterol significantly promoted nitrogen removal and biofilm formation by the denitrifying bacterial strain RWX31, whereas β-sitosterol had no effect. Assays for denitrifying enzyme activity were conducted to show that stigmasterol stimulated nitrogen removal by targeting nitrite reductase in bacteria. Enhanced N removal from water by stigmasterol, and a synergistic stimulatory effect with RWX31, was observed in open duckweed cultivation systems. We suggest that this is linked to a modulation of community composition of nirS- and nirK-type denitrifying bacteria in the rhizosphere, with a higher abundance of Bosea, Rhizobium, and Brucella, and a lower abundance of Rubrivivax. Our findings provide important new insights into the interaction of duckweed with the rhizospheric bacterial strain RWX31 and their involvement in the aquatic N cycle and offer a new path toward more effective bio-formulations for the purification of N-polluted waters.
Mostrar más [+] Menos [-]Diagnosing complex odor problems occurring in micro-polluted source water: Primary approach and application Texto completo
2021
Guo, Qingyuan | Ding, Cheng | Xu, Haozhe | Zhang, Xiaohong | Li, Zhaoxia | Li, Xuan | Yang, Bairen | Chen, Tianming | Wang, Chunmiao | Yu, Jianwei
The odor problems in river-type micro-polluted water matrixes are complicated compared to those in lakes and reservoirs. For example, the TY River in Jiangsu Province has been associated with complex odors, whereas the specific odor compounds were not clear. In this paper, a comprehensive study on characterizing the odors and odorants in source water from the TY River was conducted. Six odor types, including earthy, marshy, fishy, woody, medicinal, and chemical odors, were detected for the first time; correspondingly, thirty-three odor-causing compounds were identified. By means of evaluating odor activity values and reconstituting the identified odorants, 95, 93, 92, 90, 89 and 88% of the earthy, marshy, fishy, woody, medicinal and chemical odors in the source waters could be clarified. Geosmin and 2-methylisoborneol were associated with earthy odor, while amyl sulfide, dibutyl sulfide, propyl sulfide, dimethyl disulfide, dimethyl trisulfide and indole were related to marshy odor. The major woody and fishy odor compounds were vanillin, geraniol, β-cyclocitral and 2,4-decadienal, 2-octenal, respectively. Medicinal and chemical odors were mainly caused by 2-chlorophenol, 4-bromophenol, 2,6-dichlorophenol and naphthalene, and 1,4-dichlorobenzene, respectively. This is the first study in which six odor types and thirty-three odorants were identified simultaneously in a river-type micro-polluted water source, which can offer a reference for odor management in drinking water treatment plants.
Mostrar más [+] Menos [-]Nanoplastics transport to the remote, high-altitude Alps Texto completo
2021
Materić, Dušan | Ludewig, Elke | Brunner, Dominik | Rockmann, Thomas | Holzinger, Rupert
Plastic materials are increasingly produced worldwide with a total estimated production of >8300 million tonnes to date, of which 60% was discarded. In the environment, plastics fragment into smaller particles, e.g. microplastics (size < 5 mm), and further weathering leads to the formation of functionally different contaminants – nanoplastics (size <1 μm). Nanoplastics are believed to have entirely different physical (e.g. transport), chemical (e.g. functional groups at the surface) and biological (passing the cell membrane, toxicity) properties compared to the micro- and macroplastics, yet, their measurement in the environmental samples is seldom available. Here, we present measurements of nanoplastics mass concentration and calculated the deposition at the pristine high-altitude Alpine Sonnblick observatory (3106 MASL), during the 1.5 month campaigh in late winter 2017. The average nanoplastics concentration was 46.5 ng/mL of melted surface snow. The main polymer types of nanoplastics observed for this site were polypropylene (PP) and polyethylene terephthalate (PET). We measured significantly higher concentrations in the dry sampling periods for PET (p < 0.002) but not for PP, which indicates that dry deposition may be the preferential pathway for PET leading to a gradual accumulation on the snow surfaces during dry periods. Air transport modelling indicates regional and long-range transport of nanoplastics, originating preferentially from European urban areas. The mean deposition rate was 42 (+32/-25) kg km⁻² year⁻¹. Thus more than 2 × 10¹¹ nanoplastics particles are deposited per square meter of surface snow each week of the observed period, even at this remote location, which raises significant toxicological concerns.
Mostrar más [+] Menos [-]Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration Texto completo
2021
Nan, Hongyan | Yin, Jianxiang | Yang, Fan | Luo, Ying | Zhao, Ling | Cao, Xinde
Converting biomass waste into biochar by slow pyrolysis with subsequent soil amendment is a prospective approach with multiple environmental benefits including soil contamination remediation, soil amelioration and carbon sequestration. This study selected cow manure as precursor to produce biochar under 300 °C, 400 °C, 500 °C and 600 °C, and a remarkable promotion of carbon (C) retention in biochar by incorporation of exogenous Ca was achieved at all investigated pyrolysis temperatures. The C retention was elevated from 49.2 to 68.3% of pristine biochars to 66.1–79.7% of Ca-composite biochars. It was interesting that extent of this improvement increased gradually with rising of pyrolysis temperature, i.e., doping Ca in biomass promoted pyrolytic C retention in biochar by 16.6%, 23.4%, 29.1% and 31.1% for 300 °C, 400 °C, 500 °C and 600 °C, respectively. Thermogravimetric-mass spectrometer (TG-MS) and X-ray photoelectron spectroscopy (XPS) showed that Ca catalyzed thermal-chemical reactions and simultaneously suppressed the release of small organic molecular substances (C₂–C₇) via physical blocking (CaO, CaCO₃, and CaClOH) and chemical bonding (CO and OC–O). The catalyzation mainly occurred at 200–400 °C, while the suppression was more prominent at higher temperatures. Raman spectra and 2D FTIR analysis on biochar microstructure showed that presence of Ca had negative influence on carbon aromatization and thus weakened biochar's stability, while increasing pyrolysis temperature enhanced the stability of carbon structure. Finally, with integrating “C retention” during pyrolysis and “C stability” in biochar, the maximum C sequestration (56.3%) was achieved at 600 °C with the participation of Ca. The study highlights the importance of both Ca and pyrolysis temperature in enhancing biochar's capacity of sequestrating C.
Mostrar más [+] Menos [-]Xenopus in revealing developmental toxicity and modeling human diseases Texto completo
2021
Gao, Juanmei | Shen, Wanhua
The Xenopus model offers many advantages for investigation of the molecular, cellular, and behavioral mechanisms underlying embryo development. Moreover, Xenopus oocytes and embryos have been extensively used to study developmental toxicity and human diseases in response to various environmental chemicals. This review first summarizes recent advances in using Xenopus as a vertebrate model to study distinct types of tissue/organ development following exposure to environmental toxicants, chemical reagents, and pharmaceutical drugs. Then, the successful use of Xenopus as a model for diseases, including fetal alcohol spectrum disorders, autism, epilepsy, and cardiovascular disease, is reviewed. The potential application of Xenopus in genetic and chemical screening to protect against embryo deficits induced by chemical toxicants and related diseases is also discussed.
Mostrar más [+] Menos [-]