Refinar búsqueda
Resultados 3941-3950 de 4,043
Greenhouse gas emissions, soil quality, and crop productivity from a mono-rice cultivation system as influenced by fallow season straw management Texto completo
2016
Liu, Wei | Hussain, Saddam | Wu, Lishu | Qin, Ziguo | Li, Xiaokun | Lü, Jianwei | Khan, Fahad | Cao, Weidong | Geng, Mingjian
Straw management during fallow season may influence crop productivity, soil quality, and greenhouse gas (GHG) emissions from rice field. A 3-year field experiment was carried out in central China to examine the influence of different fallow season straw management practices on rice yield, soil properties, and emissions of methane (CH₄) and nitrous oxide (N₂O) from a mono-rice cultivation system. The treatments comprised an unfertilized control (CK), inorganic fertilization (NPK), rice straw burning in situ (NPK + RSB), rice straw mulching (NPK + RSM), and rice straw strip mulching with green manuring (NPK + RSM + GM). The maximum rice yield, soil organic carbon, soil total nitrogen, and available potassium were observed in NPK + RSM + GM treatment. Compared with NPK, the NPK + RSM + GM recorded 9 % higher grain yield averaged across 3 years. However, NPK + RSM and NPK + RSB were statistically similar with NPK regarding grain yield. The NPK + RSM and NPK + RSM + GM recorded significantly higher CH₄ emission during rice growing season as well as winter fallow; however, the response of N₂O emissions was variable. The NPK + RSM and NPK + RSM + GM were statistically similar for annual cumulative CH₄ and N₂O emissions. The NPK + RSM + GM recorded 103 and 72 % higher straw-induced net economic benefits and soil organic carbon sequestration rate, and reduced net global warming potential by 27 % as compared with NPK + RSM. Considering the benefits of soil fertility, higher crop productivity, and environmental safety, the NPK + RSM + GM could be the most feasible and sustainable option for mono-rice cultivation system in central China.
Mostrar más [+] Menos [-]Performance of a pilot demonstration-scale hybrid constructed wetland system for on-site treatment of polluted urban river water in Northwestern China Texto completo
2016
Zheng, Yucong | Wang, Xiaochang C. | Dzakpasu, Mawuli | Ge, Yuan | Zhao, Yaqian | Xiong, Jiaqing
Hybrid constructed wetland (HCW) systems have been used to treat various wastewaters across the world. However, large-scale applications of HCWs are scarce, particularly for on-site improvement of the water quality of highly polluted urban rivers in semi-arid regions. In this study, a large pilot-scale HCW system was constructed to improve the water quality of the Zaohe River in Xi’an, China. With a total area of about 8000 m², the pilot HCW system, composed of different configurations of surface and subsurface flow wetlands, was operated for 2 years at an average inflow volume rate of 362 m³/day. Local Phragmites australis and Typha orientalis from the riverbank were planted in the HCW system. Findings indicate a higher treatment efficiency for organics and suspended solids than nutrients. The inflow concentrations of 5-day biochemical oxygen demand (BOD₅), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (TN), NH₃-N, and total phosphorus (TP) were 125.6, 350.9, 334.2, 38.5, 27.2, and 3.9 mg/L, respectively. Average removal efficiencies of 94.4, 74.5, 92.0, 56.3, 57.5, and 69.2 %, respectively, were recorded. However, the pollutant removal rates were highly seasonal especially for nitrogen. Higher removals were recorded for all pollutants in the autumn while significantly lower removals were recorded in the winter. Plant uptake and assimilation accounted for circa 19–29 and 16–23 % of the TN and TP removal, respectively. Moreover, P. australis demonstrated a higher nutrient uptake ability and competitive potential. Overall, the high efficiency of the pilot HCW for improving the water quality of such a highly polluted urban river provided practical evidence of the applicability of the HCW technology for protecting urban water environments.
Mostrar más [+] Menos [-]Chemical fraction, leachability, and bioaccessibility of heavy metals in contaminated soils, Northeast China Texto completo
2016
Yutong, Zong | Qing, Xiao | Shenggao, Lu
Heavy metals in urban soils may pose risks to both urban environment and human health. However, only a fraction of heavy metals in soil is mobile and/or bioavailable for plant uptake and human ingestion. This study evaluates the chemical fraction and potential mobility and bioaccessibility of heavy metals (Cd, Cr, Cu, Pb, and Zn) in the contaminated urban topsoils from steel-industrial city (Anshan), Northeastern China. Chemical forms of heavy metals in soils are determined using Tessier sequential extraction technique. The toxicity characteristic leaching procedure (TCLP), ethylenediaminetetraacetic acid (EDTA), and US Pharmacopeia methodology (USPM) are used to determine the operationally defined potentially mobile and bioaccessible metal fractions, respectively. Sequential extraction results show that Cd has the highest percentage of exchangeable form, whereas Cr primarily exists in residual form. The non-residual fraction of heavy metals increases in the order of Cr < Cu < Pb < Zn < Cd. The leachability of heavy metals evaluated by TCLP test indicates that Cd, Zn, Cu, and Pb have much higher mobile than Cr. The bioavailability of heavy metals determined by EDTA extraction decreases in the order of Pb > Cu ≅ Zn > Cd > Cr. The order of bioaccessibility determined by USPM extraction is Pb = Cu > Zn > Cd > Cr. The Cr exhibits the lowest leachability and bioaccessibility among the investigated metals. The Pb has the highest bioaccessibility, indicating higher potential hazard for the human health. There are significant relationships between the EDTA- and USPM-extractable metals (Cd, Cu, Pb, and Zn) and the sum of first three steps of sequential extraction. Highly significant correlation is found between amounts of EDTA-extractable Cd, Cu, Pb, and Zn and USPM-extractable metals. The result suggests that EDTA extraction can be helpful to estimate the bioaccessibility of heavy metals for human ingestion. Introduction of mobile and human bioaccessible concentrations into risk assessments can give more realistic implications for urban environmental management.
Mostrar más [+] Menos [-]The effect of phytogenic feed additives to substitute in-feed antibiotics on growth traits and blood biochemical parameters in broiler chicks challenged with Salmonella typhimurium Texto completo
2016
Abudabos, Alaeldein M. | Alyemni, Abdullah H. | Dafalla, Yousif M. | Khan, Rifat Ullah
There is a growing concern over the use of antibiotics due to the increased resistance of pathogens in broiler. The present study was designed to find the comparative effect of an antibiotic, and some phytogenic on performance traits, blood biochemical parameters, and antioxidant status during starter phase exposed to Salmonella typhimurium challenge. A total of 560-day-old broiler chicks (Ross 308) were randomly allocated to seven treatments (eight replicates). Control (basal diet); T1, infected with Salmonella enterica subsp. typhimurium; T2, infected + avilamycin at the rate of 0.2 g/kg; T3, infected + essential oil of thymol; T4, infected + phytogenic; T5, infected + anti-Salmonella organic acid; and T6, infected + essential oils of thyme, anise, and other components. Body weight gain and feed conversion ratio (FCR) were significantly (P < 0.05) high in the T2 and T5 at the end of the first and the second week and similar to T4. During the second week, European production efficiency factor (EPEF) was also significantly (P < 0.05) high in T2, T4 and T5. Blood albumin increased significantly (P < 0.05) in birds of T2 in the first week, while during the second week, blood glucose and triglyceride concentration decreased significantly (P < 0.05) in T5. Blood ALT concentration decreased significantly (P < 0.05) in T6 compared to other treatments in the second week. Total antioxidant capacity (at the end of the second week) and thiobarbituric acid reactive substances (TBARS) did not change significantly. From the results of the present study, it was concluded that different feed additives could be substituted with antibiotics in the feed of broiler exposed to S. typhimurium challenge.
Mostrar más [+] Menos [-]Sensitivity of the deep-sea amphipod Eurythenes gryllus to chemically dispersed oil Texto completo
2016
Olsen, Gro Harlaug | Coquillé, Nathalie | Le Floch, Stephane | Geraudie, Perrine | Dussauze, Matthieu | Lemaire, Philippe | Camus, Lionel
In the context of an oil spill accident and the following oil spill response, much attention is given to the use of dispersants. Dispersants are used to disperse an oil slick from the sea surface into the water column generating a cloud of dispersed oil droplets. The main consequence is an increasing of the sea water–oil interface which induces an increase of the oil biodegradation. Hence, the use of dispersants can be effective in preventing oiling of sensitive coastal environments. Also, in case of an oil blowout from the seabed, subsea injection of dispersants may offer some benefits compared to containment and recovery of the oil or in situ burning operation at the sea surface. However, biological effects of dispersed oil are poorly understood for deep-sea species. Most effects studies on dispersed oil and also other oil-related compounds have been focusing on more shallow water species. This is the first approach to assess the sensitivity of a macro-benthic deep-sea organism to dispersed oil. This paper describes a toxicity test which was performed on the macro-benthic deep-sea amphipod (Eurythenes gryllus) to determine the concentration causing lethality to 50 % of test individuals (LC₅₀) after an exposure to dispersed Brut Arabian Light (BAL) oil. The LC₅₀ (24 h) was 101 and 24 mg L⁻¹ after 72 h and 12 mg L⁻¹ at 96 h. Based on EPA scale of toxicity categories to aquatic organisms, an LC₅₀ (96 h) of 12 mg L⁻¹ indicates that the dispersed oil was slightly to moderately toxic to E. gryllus. As an attempt to compare our results to others, a literature study was performed. Due to limited amount of data available for dispersed oil and amphipods, information on other crustacean species and other oil-related compounds was also collected. Only one study on dispersed oil and amphipods was found, the LC₅₀ value in this study was similar to the LC₅₀ value of E. gryllus in our study. Since toxicity data are important input to risk assessment and net environmental benefit analyses, and since such data are generally lacking on deep-sea species, the data set produced in this study is of interest to the industry, stakeholders, environmental management, and ecotoxicologists. However, studies including more deep-sea species covering different functional groups are needed to evaluate the sensitivity of the deep-sea compartments to dispersed oil relative to other environmental compartments.
Mostrar más [+] Menos [-]Hydrochemistry and coal mining activity induced karst water quality degradation in the Niangziguan karst water system, China Texto completo
2016
Zhang, Xiaobo | Li, Xue | Gao, Xubo
Hydrogeochemical analysis, statistical analysis, and geochemical modeling were employed to evaluate the impacts of coal mining activities on karst water chemistry in Niangziguan spring catchment, one of the largest karst springs in Northern China. Significant water quality deterioration was observed along the flow path, evidenced from the increasing sulfate, nitrate, and TDS content in karst water. Karst water samples are Ca-Mg-HCO₃ type in the recharge areas, Ca-Mg-HCO₃-SO₄ type in the coal mining areas, and Ca-Mg-SO₄-HCO₃/HCO₃-SO₄ type in the rural areas and discharge areas. A four-factor principal component analysis (PCA) model is conducted which explains over 82.9 % of the total variation. Factor 1, which explained the largest portion (45.33 %) of the total variance, reveals that coal mining activities and natural water-rock interaction as the primary factors controlling karst water quality. Anthropogenic effects were recognized as the secondary factor with high positive loadings for NO₃⁻ and Cl⁻ in the model. The other two factors are co-precipitation removal of trace elements and silicate mineral dissolution, which explained 20.96 % of the total variance. A two-end mixing modeling was proposed to estimate the percentage of coal wastewater giving on karst water chemistry, based on the groundwater sulfate chemistry constrains rather than sulfur isotopes. Uncertainty of sulfur isotope sources led to an overestimation of coal mining water contribution. According to the results of the modeling, the contribution of coal mining waste on karst water chemistry was quantified to be from 27.05 to 1.11 % which is ca. three times lower than the values suggested using a sulfur isotope method.
Mostrar más [+] Menos [-]A hybrid study of multiple contributors to per capita household CO2 emissions (HCEs) in China Texto completo
2016
Qu, Jiansheng | Qin, Shanshan | Liu, Lina | Zeng, Jingjing | Bian, Yue
Given the large expenditures by households on goods and services that contribute a large proportion of global CO₂ emissions, increasing attention has been paid to household CO₂ emissions (HCEs). However, compared with industrial CO₂ emissions, efforts devoted to mitigating HCEs are relatively small. A good understanding of the effects of some driving factors (i.e., urbanization rate, per capita GDP, per capita income/disposable income, Engel coefficient, new energy ratio, carbon intensity, and household size) is urgently needed prior to considering policies for reducing HCEs. Given this, in the study, the direct and indirect per capita HCEs were quantified in rural and urban areas of China over the period 2000–2012. Correlation analysis and gray correlation analysis were initially used to identify the prime drivers of per capita HCEs. Our results showed that per capita income/disposable income, per capita GDP, urbanization rate, and household size were the most significantly correlated with per capita HCEs in rural areas. Moreover, the conjoint effects of the potential driving factors on per capita HCEs were determined by performing principal component regression analysis for all cases. Based on the combined analysis strategies, alternative polices were also examined for controlling and mitigating HCEs growth in China.
Mostrar más [+] Menos [-]Degradation of cyflumetofen and formation of its main metabolites in soils and water/sediment systems Texto completo
2016
Wang, Pingping | Li, Minmin | Liu, Xingang | Xu, Jun | Dong, Fengshou | Wu, Xiaohu | Zheng, Yongquan
Cyflumetofen is a novel benzoyl acetonitrile acaricide without cross-resistance to existing acaricides. In the present study, for the first time, the environmental behaviors of cyflumetofen and the formation of its main metabolites, 2-(trifluoromethyl) benzoic acid (B-1) and 2-(trifluoromethyl) benzamide (B-3), in the four types of soil (black soil, sierozem, krasnozem, and fluvo-aquic soil) and three types of water/sediment systems (Northeast Lake, Hunan paddy field, and Beijng Shangzhuang reservoir) under aerobic and anaerobic conditions were investigated. The degradation dynamics of cyflumetofen followed first-order kinetics. Under aerobic environment, the half-lives of cyflumetofen in black soil, sierozem, krasnozem and fluvo-aquic soil were 11.2, 10.3, 12.4, and 11.4 days. Under water anaerobic conditions, the half-lives were 13.1, 10.8, 13.9, and 12.8 days. The effects of different conditions and soil types on the half-lives of cyflumetofen were studied using a one-way ANOVA test with post hoc comparison (Tukey’s test). It was shown that the differences in black soil, krasnozem, and fluvo-aquic soil were extremely significant difference (p < 0.05) under aerobic and water anaerobic conditions. And there is a strong correlation between half-life and pH. Under aerobic environment, the half-lives of cyflumetofen in Northeast Lake, Hunan paddy field, and Beijng Shangzhuang reservoir were 15.4, 16.9, and 15.1 days. Under anaerobic conditions, they were 16.5, 17.3, and 16.1 days. Analyzing the differences of the half-lives under aerobic and anaerobic conditions, the difference only in Shangzhuang reservoir was extremely significant difference (p < 0.05). In soils, cyflumetofen degraded metabolites B-1 and B-3, from the first day 0.24 % B-1 was generated, while, only very low levels of B-3 generated at the same time. As time increased, B-3 gradually increased, cyflumetofen reduced gradually. Until 100 days, there were about 3.5 % B-1 and B-3 in the soils. In the water/sediment systems, from the first day, it degraded into B-1 in the sediment, and in the water mainly degraded into B-3.
Mostrar más [+] Menos [-]Response of three biofilm-forming benthic microorganisms to Ag nanoparticles and Ag+: the diatom Nitzschia palea, the green alga Uronema confervicolum and the cyanobacteria Leptolyngbya sp Texto completo
2016
González, A. G. | Fernández-Rojo, L. | Leflaive, J. | Pokrovsky, O. S. | Rols, J-L.
Although the industrial use of nanoparticles has increased over the past decade, the knowledge about their interaction with benthic phototrophic microorganisms in the environment is still limited. This study aims to characterize the toxic effect of ionic Ag⁺ and Ag nanoparticles (citrate-coated silver nanoparticles, AgNPs) in a wide concentration range (from 1 to 1000 μg L⁻¹) and duration of exposure (2, 5 and 14 days) on three biofilm-forming benthic microorganisms: diatom Nitzschia palea, green algae Uronema confervicolum and cyanobacteria Leptolyngbya sp. Ag⁺ has a significant effect on the growth of all three species at low concentrations (1–10 μg L⁻¹), whereas the inhibitory effect of AgNPs was only observed at 1000 μg L⁻¹ and solely after 2 days of exposure. The inhibitory effect of both Ag⁺ and AgNPs decreased in the course of the experiments from 2 to 14 days, which can be explained by the progressive excretion of the exopolysaccharides and dissolved organic carbon by the microorganisms, thus allowing them to alleviate the toxic effects of aqueous silver. The lower impact of AgNPs on cells compared to Ag⁺ can be explained in terms of availability, internalization, reactive oxygen species production, dissolved silver concentration and agglomeration of AgNPs. The duration of exposure to Ag⁺ and AgNPs stress is a fundamental parameter controlling the bioaccumulation and detoxification in benthic phototrophic microorganisms.
Mostrar más [+] Menos [-]Health risk assessment from contaminated foodstuffs: a field study in chromite mining-affected areas northern Pakistan Texto completo
2016
Nawab, Javed | Li, Gang | K̲h̲ān, Sardār | Sher, Hassan | Aamir, Muhammad | Shamshad, Isha | Khan, Anwarzeb | Khan, Muhammad Amjad
This study aimed to investigate the potential health risk associated with toxic metals in contaminated foodstuffs (fruits, vegetables, and cereals) collected from various agriculture fields present in chromite mining-affected areas of mafic and ultramafic terrains (northern Pakistan). The concentrations of Cr, Ni, Zn, Cd, and Pb were quantified in both soil and food samples. The soil samples were highly contaminated with Cr (320 mg/kg), Ni (108 mg/kg), and Cd (2.55 mg/kg), which exceeded their respective safe limits set by FAO/WHO. Heavy metal concentrations in soil were found in the order of Cr>Ni>Pb>Zn>Cd and showed significantly (p < 0.001) higher concentrations as compared to reference soil. The integrated pollution load index (PLI) value was observed greater than three indicating high level of contamination in the study area. The concentrations of Cr (1.80–6.99 mg/kg) and Cd (0.21–0.90 mg/kg) in foodstuffs exceeded their safe limits, while Zn, Pb, and Ni concentrations were observed within their safe limits. In all foodstuffs, the selected heavy metal concentrations were accumulated significantly (p < 0.001) higher as compared to the reference, while some heavy metals were observed higher but not significant like Zn in pear, persimmon, white mulberry, and date-plum; Cd in pear, fig and white mulberry; and Pb in walnut, fig, and pumpkin. The health risk assessment revealed no potential risk for both adults and children for the majority of heavy metals, except Cd, which showed health risk index (HRI) >1 for children and can pose potential health threats for local inhabitants. Graphical Abstract Heavy metals released from chromite mining lead to soil and foodstuff contamination and human health risk
Mostrar más [+] Menos [-]