Refinar búsqueda
Resultados 41-50 de 4,302
Catalytic production of biodiesel from corn oil by metal-mixed oxides
2017
Hatefi, Hajar | Mohsennia, Mohsen | Niknafs, Hadi | Golzary, Abooali
The present study investigates the transesterification of corn oil with methanol over two oxides of MgO and ZnO at 65 ͦC and 1 atm. These two catalysts have been prepared via a conventional co-precipitation process. As for MgO, the corresponding mixed metal nitrate solution has been mixed and heated at the presence of urea. ZnO has also been synthesized by co-precipitation of metal acetate at the presence of oxalic acid and ethanol. The catalysts then have been characterized by means of X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). XRD results indicate high purity for both catalysts. Also, catalytic activity has been evaluated in methanol reflux temperature through corn oil transesterification, with the impacts of reaction variables, like catalyst amount, methanol/oil molar ratio, and reaction time on biodiesel yield, investigated by means of HNMR spectrum. Under appropriate transesterification conditions at 65 °C (catalyst amount= 5%, methanol/ oil ratio= 20, and reaction time= 10 hr), an ME content of 62.61% can be achieved, using MgO catalyst. Similarly, the experiments have been repeated to achieve the best yield, using ZnO catalyst, with the highest rate, equal to 53.1%, obtained in 9% of catalyst and methanol/oil ratio of 30 over 10 hr. Furthermore, reusability of ZnO and MgO has been evaluated in transesterification reaction.
Mostrar más [+] Menos [-]Estimation and modeling of gas emissions in municipal landfill (Case study: Landfill of Jiroft City)
2017
Ghasemzade, Reza | Pazoki, Maryam
One of the major factors, contributing to the emission of greenhouse gases in the environment is generation of pollutant gases in municipal landfills. As for the design and building of a gas collecting system, it is necessary to properly estimate the amount and type of the landfill emissions. By means of LandGEM model, this study predicts the amount and type of the landfill gases, produced for 30 years (from 2016 to 2045) in Jiroft. Results show that in 2045, 3, 324, 274 tons of waste will be disposed in municipal landfills of Jiroft and the total amount of produced gas, methane, carbon dioxide, and non-methane organic compounds will be 32, 994, 8813, 24,181, and 378.8 tons/year, respectively. Furthermore, the rate of landfill gas emissions from 2016 to 2045 has been achieved. Maximum concentrations of methane, carbon dioxide and non-methane organic compounds in 2045, in 700 meters from landfill, will be 40, 590, 112, 700, and 1765 tons/m3 respectively. Based on the results, obtained from this article, landfill pollutants such as CH4, CO2, and NMOC's can reach up to 15 kilometers from landfill, thus social places should be located farther than 15 kilometers from the landfill site of Jiroft. The results, obtained in this paper, can be used to identify the effect of Jiroft landfill in global emission of greenhouse gases and proper management of the landfill gas not only reduces greenhouse gas emissions, diminishing their effects on public health, but can be also used as a sustainable energy source.
Mostrar más [+] Menos [-]Responses of Accessions of Zea Mays to Crude Oil Pollution Using Growth Indices and Enzyme Activities as Markers
2017
Njoku, K. L
The performance of every plant in an environment is an indicator of how the plant can withstand the various environmental conditions. This study investigated the toxicity of crude oil on the growth performance, chlorophyll contents, enzymatic activities and oxidative stress biomarkers of eight accessions of Zea mays. The growth enzyme (amylase and invertase) activities, as well as oxidative stress biomarkers (malondialdehyde, peroxidase, superoxide dismutase and catalase) in Z. mays were assayed using spectrophotometric method. The maize accessions were grown in the experimental pots containing crude oil treatments (2%, 4%, 6%, 8% and 10%) and harvested after 14 days of seedling emergence. The results showed that the percentage seedling emergence, leaf area, root length, stem girth and shoot length of each accession were significantly reduced (p
Mostrar más [+] Menos [-]Levels of natural radioactivity in environment in residential area of Moradabad District, Western Uttar Pradesh
2017
Rastogi, Nikhil | Singh, Indu
Indoor radon and thoron have been measured in the houses ofMoradabad District, Uttar Pradesh India, by means of solid state nuclear trackdetectors. Radon, an invisible radioactive gas, occurs naturally in indooratmospheres and along with thoron is the most important contribution of humanexposure to natural sources. Radon exists in soil gas building materials and indooratmosphere to name but a few. Risk of lung cancer depends on the concentrationof radon and thoron and their decay products in the environment aboverecommended levels. The present article measures the concentration of indoorradon and thoron in 60 dosimeters by means of a solid state nuclear track detectorin different house types of Moradabad district, Uttar Pradesh. The measurementshave been carried out in residential buildings at a height of 2 m from the sea level,using a twin chamber radon dosimeter. The value of radon concentration in thepresent study varies between 10.5 Bq/m3 and 29.5 Bq/m3 with an average of 19.8Bq/m3 while that of thoron is between 5.6 Bq/m3 and 24 Bq/m3 with an average of14.9 Bq/m3 respectively. Results, obtained with twin cup radon/thoron dosimeter,show that the concentration of indoor radon and thoron have been within therecommended level, with all the values staying under the safe limits, decreed bythe International Commission on Radiological Protection (ICRP) and UnitedNations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR).
Mostrar más [+] Menos [-]Evaluation of Cadmium Removal from the Water in Phytoremeiation Process Using Eichhornia crassipes
2017
Asrari, Elham | Avatefi Nezhad, Goltab
Conserving water resources and protecting them from pollution are of high account in the natural cycle of our life. This study has tried to determine the refining potential and capacity of water hyacinth (Eichhornia crassipes) in order to remove the cadmium from water, studying the influence of factors such as initial concentration of cadmium, contact time, absorbent mass, and pH. Results have shown that the best efficiency of cadmium, more than 99%, was obtained in the optimum conditions (i.e. retention time of 30 hours, adsorbent dose of three plants (12 stems), and pH=6.6). By increasing the initial concentration of cadmium from 0.28 to 8.28 mg/L, the elimination efficiency did not change; moreover, by increasing the absorbent mass, the elimination efficiency increased from 98.4 to 99.8 and the lowest retention time was obtained for the balance. All experiments have been repeated three times, showing in the end that water hyacinth is able to absorb cadmium up to 8.28 mg/L. This process follows Freundlich isotherm (R2=0.98). Results of this study indicate that this plant can grow well at high levels of cadmium and the growth of water hyacinth is better in the presence of cadmium than control conditions (city water). Finally, it can be concluded that it is necessary to provide a reliable, cheap, and fast method to eliminate pollution. Eichhornia crassipes, a promising plant with great functionality, can be used as a refiner in order to eliminate the heavy metals in wastewater (sewage) effluents, particularly industrial sewage.
Mostrar más [+] Menos [-]Utilization of temple floral waste for extraction of valuable products: A close loop approach towards environmental sustainability and waste management
2017
Singh, Pardeep | Borthakur, A. | Singh, R. | Awasthi, Sh. | Pal, D.B. | Srivastava, P. | Tiwary, D. | Mishra, P.K.
This study presents the natural dye recovery from various biodegradable temple and household wastes. The raw material for colour extraction consisted residual flowers and garlands from various temples as well as onion and vegetables peels from vegetable markets, university hostels, and households, which were washed, dried, crushed, and sieved. The extracted natural colours were produced by means of ultra-sonication, and were dried in the spray drier, being characterized by FT-IR and UV-Vis Spectrophotometers. They were used to dye various fabrics such as cotton, silk, and wool, not to mention different mordents. It was found out that the remaining residue, left after dye extraction, was rich in nutrients, hence, it could be further used as the resource material, itself. As a result, we explored these residual wastes for vermicomposting and biochar production, which can be further employed as an organic fertilizer for agriculture. Overall, the present waste management approach will lead to a closed-loop environmental management through waste reduction and reutilization. It will also provide value-added materials for economic gains from waste. Thus, it can be promoted as a potential mechanism to maintain the environmental sustainability at wider scales.
Mostrar más [+] Menos [-]Determination of nitrate utilization efficiency of selective strain of Bacillus sp. isolated from Eutrophic Lake, Theerthamkara, Kasaragod, Kerala
2017
Usharani, K. | Sruthilaya, K. | Divya, K.
Nitrate pollutants increase the growth of algal bloom, resulting in fresh water eutrophication. The high nitrogen level in wastewater has become a growing concern, which has risen the necessity to develop efficient nitrogen removal techniques. Biological denitrification, which is the reduction of oxidized nitrogen compounds like nitrate or nitrite to gaseous nitrogen compounds, is the most important and widely used method to treat nitrate wastes as it enables the transformation of nitrogen compounds into harmless nitrogen gas. As such, this study collected samples from Eutrophic Lake, picking isolates of bacterial strain with good growth rates in the nitrate medium. The selected bacterial strains were cultured on media 1and 2 and by means of UV-visible spectrophotometer, the nitrate removal efficiency and growth were detected at 410 nm and 600 nm OD respectively. After comparing three bacterial strains, it was found that RN1 had a higher efficiency in nitrate removal at 1000ppm nitrate concentration. At an optimum temperature of 37°C, pH of 7, and agitation of 121 rpm, after 432 hrs of the treatment, RN1 showed an optimum growth, equal to 0.1859 OD in 1000ppm nitrate solution with dextrose. Also the spectral analysis of RN1 strain showed 85% removal efficiency, thus making this strain the best one. Confirmed and identified as Bacillus species, it can be recommended for the bioremoval process of nitrate from wastewater.
Mostrar más [+] Menos [-]Growth-phase dependent biodesulfurization of Dibenzothiophene by Enterobacter sp. strain NISOC-03
2017
Papizadeh, Moslem | Roayaei Ardakani, Mohammad | Motamedi, Hossein
Petroleum-polluted soil samples from Ahvaz oilfield were enriched, using three methods to detect microorganisms with different dibenzothiophene degradation capabilities. Strain NISOC-03, a nitrate-reducing, oxidase negative, catalase, citrate, and urease positive, gram negative rod, showed interesting dibenzothiophene desulfurization behavior, designated as Entreobacter sp. strain NISOC-03 based on phenotype and genotype analyses. Gas chromatography, biomass measurement, and Gibb’s assay showed that in the presence of benzoate as the carbon source, strain NISOC-03 utilized 64% of 0.8 mM dibenzothiophene, producing 0.27 mM phenyl phenol during the exponential growth phase, though the produced phenyl phenol was degraded in the stationary growth phase. In the presence of glucose as the carbon source, however, strain NISOC-03 metabolized only 19.6% of 0.8 mM dibenzothiophene. Furthermore, replacing glucose with ethanol or glycerol led to the same reduction of the dibenzothiophene utilization. It is thus concluded that the chemistry of the potential carbon source(s) in the culture medium has a significant influence on the quality and the rate of dibenzothiophene metablization, and the enrichment designation has a very vital effect on the biodegradation efficiency of the isolated microorganisms.
Mostrar más [+] Menos [-]Evaluating the application of wastewater in different soil depths (Case study: Zabol)
2017
Shojaee, Saeed | Zehtabian, Gholamreza | Jafary, Mohammad | Khosravi, Hasan
Water scarcity, its necessity in food production, and environmental protection in the world have forced human beings to seek new water sources. Nowadays, application of unconventional water resources (wastewater) has been proposed in countries facing the crisis of water resources shortage; however, a few studies have dealt with this issue. The present study has evaluated the changes in the elements of the soil, irrigated with wastewater. For so doing, an experiment has been conducted on a randomized complete block design with three replications. Soil samples have been collected from the studied regions at two depths of 0-30 cm and 30-60 cm and the studied parameters have included sodium, total calcium, magnesium, some acidity, and electrical conductivity of the soil. Three regions of study (namely no irrigation, irrigation with treated wastewater, and irrigation with river waters) have been taken into consideration. Results have shown increased calcium, magnesium, and pH of the effluent from Zabol Wastewater Treatment Plant compared to the control; however, electrical conductivity and chloride have decreased in wastewater-irrigated soil. The electrical conductivity in the surface layer of wastewater samples, treated with an amount of 2.25 (ds/m), has had the most significant difference to the control and other treatments. It can be concluded that wastewater increases some soil properties, contributing to its restoration.
Mostrar más [+] Menos [-]Statistical modeling of the association between pervasive precipitation anomalies in Southern Alburz and global ocean-atmospheric patterns
2017
Molanezhad, Mahmoud
Precipitation patterns are influenced by many factors, such as global atmospheric circulations to name but one. Precipitation patterns in Iran have always had great fluctuations even in a smaller scale like the Alburz Mountain Range. The present research has tried to find the relationship between global atmospheric patterns and the pervasive precipitation ones in Alburz. For doing so, 17 climate indices have been chosen with the correlation between these indices and the precipitation data calculated in different lag times, using a backward correlation method (from the present time to 3 months earlier). Based on the obtained correlation results, a regression modeling has been conducted that employs a backward method. As for each lag time, one equation has been offered to estimate the amount of precipitation for every single region. Results have shown that the Bivariate ENSO Time Series (BEST) and the East Pacific Oscillation (EPO) provide the highest correlation with the pervasive precipitation time series. Also, it has been demonstrated that in multivariate correlation, the efficient index to model the relation among these indices as well as precipitation in southern Alburz alters in each lag time. Both MBE and RMSE, employed to evaluate the modeling, show relatively acceptable values, implying that the equations are acceptably capable of predicting the amount of precipitation in both northern and southern Alburz.
Mostrar más [+] Menos [-]