Refinar búsqueda
Resultados 451-460 de 7,995
Agricultural nitrogen and phosphorus balances of Korea and Japan: Highest nutrient surplus among OECD member countries Texto completo
2021
Im, Chi-yŏn | Islam Bhuiyan, Mohammad Saiful | Lee, Seul Bi | Lee, Jeong Gu | Kim, Pil Joo
Excessive nutrient balance is a very crucial issue for environmental hazards. The constant addition of high-amounts of nutrient sources in agricultural production generates negative environmental conditions in Korea and Japan yet to be resolved. Therefore, it is obligatory to comprehend the nutrient (nitrogen (N) and phosphorus (P)) balance that is assessed by the difference between nutrient input and output in the soil surface in Korea and Japan. Among 34 Economic Co-operation and Development (OECD) countries, Korea and Japan had the highest N and P balances and thus both countries are primarily responsible for severe environmental pollution via nutrient release. The cultivable land area in both countries has constantly decreased during 1990–2017 at approximately 20 and 15% in Korea and Japan, respectively. Even N and P use efficiency sharply decreased with increasing N and P balance in both targeted countries. Japanese P balance, Korean N and P balances were decreased after the mid-1990s whereas, Japanese N balance almost unchanged for the last 28 years. Unlike chemical fertilizer input, Korean manure input level significantly increased from 78 kg N ha⁻¹ in 1990 to 157 kg N ha⁻¹ in 2017. Japanese manure input level was higher than that of chemical fertilizer without any big change for the last 28 years. The lion share of high N and P balance in both countries could generate from manure inputs, therefore, the number of livestock and their produced debris need to be used with more cautious for the reduction of national N and P surpluses at a benchmark level. These findings ensure to make a more environment friendly policy that can further reduce nutrient balance as well as improve soil health.
Mostrar más [+] Menos [-]Lichen-based critical loads for deposition of nitrogen and sulfur in US forests Texto completo
2021
Geiser, Linda H. | Root, Heather | Smith, Robert J. | Jovan, Sarah E. | St Clair, Larry | Dillman, Karen L.
Critical loads are thresholds of atmospheric deposition below which harmful ecological effects do not occur. Because lichens are sensitive to atmospheric deposition, lichen-based critical loads can foreshadow changes of other forest processes. Here, we derive critical loads of nitrogen (N) and sulfur (S) deposition for continental US and coastal Alaskan forests, based on nationally consistent lichen community surveys at 8855 sites. Across the eastern and western US ranges of 459 lichen species, each species' realized optimum was the N or S atmospheric deposition value at which it most frequently occurred. The mean of optima for all species at a site, weighted by their abundances, was defined as a community “airscore” indicative of species’ collective responses to atmospheric deposition. To determine critical loads for adverse community compositional shifts, we then modeled changes in airscores as a function of deposition, climate and forest habitat predictors in nonparametric multiplicative regression. Critical loads, indicative of initial shifts from pollution-sensitive toward pollution-tolerant species, occurred at 1.5 kg N ha⁻¹ y⁻¹ and 2.7 kg S ha⁻¹ y⁻¹. Importantly, these critical loads remain constant under any climate regime nationwide, suggesting both simplicity and nationwide applicability. Our models predict that preventing excess N deposition of just 0.2–2.0 kg ha⁻¹ y⁻¹ in the next century could offset the detrimental effects of predicted climate warming on lichen communities. Because excess deposition and climate warming both harm the most ecologically influential species, keeping conditions below critical loads would sustain both forest ecosystem functioning and climate resilience.
Mostrar más [+] Menos [-]Organophosphate esters in surface soils from a heavily urbanized region of Eastern China: Occurrence, distribution, and ecological risk assessment Texto completo
2021
Tang, Jianfeng | Sun, Jing | Ke, Ziyan | Yin, Hongling | Yang, Lei | Yen, Haw | Li, Xinhu | Xu, Yaoyang
Organophosphate esters (OPEs) pose increasing concerns for their widespread distribution in soil environments and potential threat to human health. In this study, we investigated the occurrence and associated risks of seven OPEs in surface soils and the potential influence of human activities on soil OPE contamination in a heavily urbanized region of the Yangtze River Delta in Eastern China. All target OPEs were detected in the soil samples (100% of samples) reflecting their widespread distribution in the study region. The total OPE concentration (the sum of the seven OPEs) ranged from 162.7 to 986.0 ng/g on a dry weight basis, with a mean value of 469.3 ± 178.6 ng/g. Tris (2-butoxyethyl) phosphate was the main compound, accounting for 67–78% of the total OPE concentration. Ecological risk assessment showed that tris(2-chloroisopropyl) phosphate, tris(2,3-dichloropropyl) phosphate, tris(2-butoxyethyl) phosphate, and tris(2-ethylhexyl) phosphate posed a medium potential risk to terrestrial biota (0.1 < risk quotient <1). The human exposure estimation showed insignificant risks to local population. Redundancy analysis revealed that the individual and total OPE contaminations were positively correlated with human activity parameters. The total OPE concentrations were positively correlated to population density (R² = 0.38, P < 0.001), and urban land use percentage (R² = 0.39, P < 0.001), while negatively correlated to forest land use percentage (R² = 0.59, P < 0.001), suggesting a significant contribution of human disturbance to OPE pollution. These results can facilitate OPE contamination control and promote sustainable soil management in urbanized and industrialized regions.
Mostrar más [+] Menos [-]Microplastics pollution in the soil mulched by dust-proof nets: A case study in Beijing, China Texto completo
2021
Chen, Yixiang | Wu, Yihang | Ma, Jin | An, Yanfei | Liu, Jiyuan | Yang, Shuhui | Qu, Yajing | Chen, Haiyan | Zhao, Wenhao | Tian, Yuxin
As a driving factor of global changes, microplastics have gradually attracted widespread attention. Although MPs are extensively studied in aquatic systems, their presence and fate in terrestrial systems and soil are not fully understood. In China, construction-land must be mulched by dust-proof nets to prevent and control fine particulate pollution, which may cause MPs pollution and increase ecological risks. In order to understand the pollution characteristics and sources of MP in the soil covered by dust nets, we conducted a case study in Beijing. Our results revealed that the abundance of MPs in soil mulched by dust-proof nets ranged from 272 to 13,752 items/kg. Large-sized particles (>1000 μm) made up a significant proportion (49.83%) of MPs in the study area. The dominant MP polymer types were polyethylene (50.12%) and polypropylene (41.25%). The accumulation of MPs in construction-site soil mulched by dust-proof nets (average, 4910.2 items/kg) was significantly higher (P < 0.05) than that in unmulched soil (average, 840.8 items/kg), which indicates a dust-proof nets as an essential source of microplastics in the soil of construction land. We applied a remote-sensing data analysis technique based on remote imagery acquired from a high-resolution remote-sensing satellite combined with deep-learning convolutional neural networks to automatically detect and segment dust-proof nets. Based on high-resolution remote sensing images and using a U-net convolutional neural network, we extract the coverage area of Beijing’s dust-proof nets (18.6 km²). Combined the abundance of MPs and the dust-proof nets’ coverage area, we roughly estimate that 7.616 × 10⁹ to 3.581 × 10¹¹ MPs accumulated in the soil mulched by the dust-proof nets in Beijing. Such a large amount of MPs may cause a series of environmental problems. This study will highlight the understanding of soil MPs pollution and its potential environmental impacts for scientists and policymakers. It provides suggestions for decision-makers to formulate effective legislation and policies, so as to protect human health and protect the soil and the wider environment.
Mostrar más [+] Menos [-]Multigeneration toxicity of Geunsami® (a glyphosate-based herbicide) to Allonychiurus kimi (Lee) (Collembola) from sub-individual to population levels Texto completo
2021
Wee, June | Lee, Yun-Sik | Kim, Yongeun | Lee, Yong Ho | Lee, Sung-Eun | Hyun, Seunghun | Cho, Kijong
Glyphosate-based herbicide (GBH) is the most widely used herbicide worldwide and has long been considered to have significantly low toxicity to non-target soil invertebrates based on short-term toxicity tests (<56 d). However, long-term GBH toxicity assessment is necessary as GBH is repeatedly applied in the same field annually because of the advent of glyphosate-resistant crops. In this study, a multigeneration test was conducted where Allonychiurus kimi (Collembola) was exposed to GBH for three generations (referred to as F₀, F₁, and F₂) to evaluate the long-term toxic effect. The endpoints used were adult survival and juvenile production for the individual level toxicity assessment. Phospholipid profile and population age structure were the endpoints used for sub-individual and population levels, respectively. GBH was observed to have no negative effects on adult survivals of all generations, but juvenile production was found to decrease in a concentration-dependent manner, with EC₅₀s being estimated as 572.5, 274.8, and 59.8 mg a.i. kg⁻¹ in the F₀, F₁, and F₂ generations, respectively. The age structure of A. kimi population produced in the test of all generations was altered by GBH exposure, mainly because of the decrease in the number of young juveniles. Further, differences between the phospholipid profiles of the control and GBH treatments became apparent over generations, with PA 16:0, PA 12:0, and PS 42:0 lipids not being detected at the highest concentration of 741 mg kg⁻¹ in F₂. Considering all our findings from sub-individual to population levels, repeated and long-term use of GBH could have significantly higher negative impacts on non-target soil organisms than expected.
Mostrar más [+] Menos [-]Characteristics of selenium enrichment and assessment of selenium bioavailability using the diffusive gradients in thin-films technique in seleniferous soils in Enshi, Central China Texto completo
2021
Lyu, Chenhao | Qin, Yongjie | Zhao, Zhuqing | Liu, Xinwei
Agricultural products from seleniferous areas commonly face problems associated with substantial variation in selenium (Se) concentration, which is mainly caused by the heterogeneity of Se bioavailability in soil. Many studies have assessed the bioavailability of Se and its influencing factors using soil samples treated with exogenous Se. Given the distinctly different characteristics of Se-spiked soils and naturally seleniferous soils, exploring Se bioavailability in naturally seleniferous soils is crucial to the stable production of Se-enriched agricultural products. In this study, we used the classical sequential extraction method to determine the Se fractionation and then applied the diffusive gradients in thin-films (DGT) technique to assess the Se bioavailability in naturally seleniferous soils. The results indicated that soluble and exchangeable Se fractions with high bioavailability accounted for only 0.7% and 5.1% of total Se, respectively. Both soluble and exchangeable Se concentrations were significantly positively correlated with soil pH (r = 0.329 and 0.262, respectively; P < 0.01). Se mainly exists in Fe–Mn oxide-bound, organic matter-bound, and residual Se fractions with low mobility (94.2% of total Se), among which organic matter-bound Se was the predominant fraction (49.5% of total Se). A significant positive correlation was found between total Se and soil organic matter (r = 0.539; P < 0.01). Multiple regression analysis revealed that the DGT-determined Se was mostly derived from soluble and exchangeable Se. The high correlation between the DGT-determined Se fraction and Se uptake by rice (r = 0.91; P < 0.01) confirmed that DGT can accurately assess Se bioavailability in naturally seleniferous soils in Enshi and other similar environmental settings.
Mostrar más [+] Menos [-]Magnetic biochars have lower adsorption but higher separation effectiveness for Cd2+ from aqueous solution compared to nonmagnetic biochars Texto completo
2021
Huang, Fei | Zhang, Si-Ming | Wu, Ren-Ren | Zhang, Lu | Wang, Peng | Xiao, Rong-Bo
Magnetic biochars were prepared by chemical co-precipitation of Fe³⁺/Fe²⁺ onto rice straw (M-RSB) and sewage sludge (M-SSB), followed by pyrolysis treatment, which was also used to prepare the corresponding nonmagnetic biochars (RSB and SSB). The comparison of adsorption characteristics between magnetic and nonmagnetic biochars was investigated as a function of pH, contact time, and initial Cd²⁺ concentration. The adsorption of nonmagnetic biochars was better described by pseudo-second-order kinetic model, and the adsorption of RSB and SSB was better described by Langmuir and Freundlich models, respectively. Magnetization of the biochars did not change the applicability of their respective adsorption models, but reduced their adsorption capabilities. The maximum capacities were 42.48 and 4.64 mg/g for M-RSB and M-SSB, respectively, underperforming their nonmagnetic counterparts of 58.65 and 7.22 mg/g for RSB and SSB. Such a reduction was fundamentally caused by the decreases in the importance of cation-exchange and Cπ-coordination after magnetization, but the Fe-oxides contributed to the precipitation-dependent adsorption capacity for Cd²⁺ on magnetic biochars. The qualitative and quantitative characterization of adsorption mechanisms were further analyzed, in which the contribution proportions of cation-exchange after magnetization were reduced by 31.9% and 12.1% for M-RSB and M-SSB, respectively, whereas that of Cπ-coordination were reduced by 3.4% and 31.1% for M-RSB and M-SSB, respectively. These reductions suggest that for adsorbing Cd²⁺ the choice of conventional biochar was more relevant than whether the biochar was magnetized. However, magnetic biochars are easily separated from treated solutions, depending largely on initial pH. Their easy of separation suggests that magnetic biochars hold promise as more sustainable alternatives for the remediation of moderately Cd-contaminated environments, such as surface water and agriculture soil, and that magnetic biochars should be studied further.
Mostrar más [+] Menos [-]Side-chain fluorotelomer-based polymers in children car seats Texto completo
2021
Wu, Yan | Miller, Gillian Z. | Gearhart, Jeff | Peaslee, Graham | Venier, Marta
Fabric and foam samples from popular children car seats marketed in the United States during 2018 were tested for fluorine content by particle-included gamma ray emission spectroscopy (PIGE, n = 93) and X-ray photoelectron spectroscopy (XPS, n = 36), as well as for per- and polyfluoroalkyl substances (PFAS) by liquid and gas chromatography mass spectrometry (LC/MS and GC/MS, n = 36). PFAS were detected in 97% of the car seat samples analyzed with MS, with total concentrations of 43 PFAS (∑PFAS) up to 268 ng/g. Fabric samples generally had greater ∑PFAS levels than foam and laminated composites of foam and fabric. The three fabric samples with the highest total fluorine content as represented by the highest PIGE signal were also subjected to ultraviolet (UV) irradiation and the total oxidizable precursor (TOP) assay. Results from these treatments, as well as the much higher organofluorine levels measured by PIGE compared to LC/MS and GC/MS, suggested the presence of side-chain fluorotelomer-based polymers (FTPs), which have the potential to readily degrade into perfluoroalkyl acids (PFAAs) under UV light. Furthermore, fluorotelomer (meth)acrylates were found to be indicators for the presence of (meth)acrylate-linked FTPs in consumer products, and thus confirmed that at least half of the tested car seats had FTP-treated fabrics. Finally, extraction of selected samples with synthetic sweat showed that ionic PFAS, particularly those with fluorinated carbons ≤8, can migrate from fabric to sweat, suggesting a potential dermal route of exposure.
Mostrar más [+] Menos [-]Carbamazepine induces hepatotoxicity in zebrafish by inhibition of the Wnt/β-catenin signaling pathway Texto completo
2021
Bai, Zhonghui | Jia, Kun | Chen, Guilan | Liao, Xinjun | Cao, Zigang | Zhao, Yangqi | Zhang, Chunping | Lu, Huiqiang
As drug abuse has become increasingly serious, carbamazepine (CBZ) is discharged into the aquatic environment with municipal sewage, causing potential harm to aquatic organisms. Here, we utilized zebrafish, an aquatic vertebrate model, to comprehensively evaluate the hepatotoxicity of CBZ. The larvae were exposed to 0.07, 0.13, and 0.26 mmol/L CBZ from 72 hpf to 144 hpf, and the adults were exposed to 0.025, 0.05, and 0.1 mmol/L CBZ for 28 days. The substantial changes were observed in the size and histopathology of livers, indicating that CBZ induced severe hepatoxicity in the larvae and adults. Oil red O staining demonstrated CBZ exposure caused severe lipid accumulation in the livers of both larvae and adults. Furthermore, CBZ exposure facilitated hepatocyte apoptosis through TUNEL staining, which was caused by rising ROS content. Subsequently, down-regulation of genes related to the Wnt pathway in exposure groups indicated that CBZ inhibited the development of liver via the Wnt/β-catenin signaling pathway. In conclusion, CBZ induced severe hepatotoxicity by promoting lipid accumulation, generating excessive ROS production, and inhibiting the Wnt/β-catenin signaling pathway in zebrafish. The results reveal the occurrence of CBZ-induced hepatotoxicity in zebrafish and clarify its mechanism of action, which potentially illustrate environmental concerns associated with CBZ exposure.
Mostrar más [+] Menos [-]Cloud cover amplifies the sleep-suppressing effect of artificial light at night in geese Texto completo
2021
van Hasselt, Sjoerd J. | Hut, Roelof A. | Allocca, Giancarlo | Vyssotski, Alexei L. | Piersma, Theunis | Rattenborg, Niels C. | Meerlo, Peter
In modern society the night sky is lit up not only by the moon but also by artificial light devices. Both of these light sources can have a major impact on wildlife physiology and behaviour. For example, a number of bird species were found to sleep several hours less under full moon compared to new moon and a similar sleep-suppressing effect has been reported for artificial light at night (ALAN). Cloud cover at night can modulate the light levels perceived by wildlife, yet, in opposite directions for ALAN and moon. While clouds will block moon light, it may reflect and amplify ALAN levels and increases the night glow in urbanized areas. As a consequence, cloud cover may also modulate the sleep-suppressing effects of moon and ALAN in different directions. In this study we therefore measured sleep in barnacle geese (Branta leucopsis) under semi-natural conditions in relation to moon phase, ALAN and cloud cover. Our analysis shows that, during new moon nights stronger cloud cover was indeed associated with increased ALAN levels at our study site. In contrast, light levels during full moon nights were fairly constant, presumably because of moonlight on clear nights or because of reflected artificial light on cloudy nights. Importantly, cloud cover caused an estimated 24.8% reduction in the amount of night-time NREM sleep from nights with medium to full cloud cover, particularly during new moon when sleep was unaffected by moon light. In conclusion, our findings suggest that cloud cover can, in a rather dramatic way, amplify the immediate effects of ALAN on wildlife. Sleep appears to be highly sensitive to ALAN and may therefore be a good indicator of its biological effects.
Mostrar más [+] Menos [-]