Refinar búsqueda
Resultados 461-470 de 561
Study of Some Stability Parameters in the Atmosphere of Oil Al-Dura Refinery, Southeast Baghdad
2023
Farant H. S. Lagenean, Salwa S. Naif and Monim H. Al-Jiboori
Wind and temperature measurements at an oil refinery site located southeast of Baghdad city at two levels, 15 and 30 m, are presented. Three schemes are used to determine different stability classifications: Monin-Obukhov length, gradient, and bulk Richardson numbers. Meanwhile, vertical changes in air temperature and wind shear are also computed. There were lapse rate and inversion cases during the nights and days while favorable wind shear was dominant. The variation of stability in each scheme is large, covering the entire range of stability for a given class. The results of stability schemes are compared to each other. The results show that the schemes based on gradient and bulk Richardson numbers reasonably compare them.
Mostrar más [+] Menos [-]Optimization of Biodiesel Parameters Using Response Surface Methodology and Production of Biodiesel
2023
Y. K. Singh
The requirement for a renewable and environmentally gracious alternative resource of energy has grown in recent years as a result of increased knowledge of the negative impacts of petroleum-based fuels on the environment and the regular rise in crude oil prices. Biodiesel has been proven to be the ideal replacement for diesel because of its unique qualities, such as a huge decrease in greenhouse gas emissions, nonparticulate matter pollutants, non-sulfur emissions, less toxicity, and degradability. This article examines the pre-treatment stage, the physiological and chemical features of WCO, transesterification, esterification, and the manufacturing of biofuel from waste-cooked oil using several techniques and catalyst types. The elements that influence the stated process parameters are investigated, with a particular focus on the methanol to oil ratio (molar ratio), time of reaction, the temperature of the reaction, catalyst percentage, and yield of biodiesel. After the production of biodiesel, we can optimize the process parameters, for example, methanol to oil ratio, the temperature of the reaction, duration of reaction, and catalyst percentage, and also optimize the yield of biofuel generation with the CCD design of the Response surface methodology (RSM) algorithm using Design Expert software.
Mostrar más [+] Menos [-]An Integrated GIS-AHP Approach for Municipal Solid Waste Landfill Siting in Srikakulam District, Andhra Pradesh
2023
Penki Ramu , Basina Sai Santosh and Praveen S.
The availability of land for proper waste disposal is one of the most important and emerging potential challenges in most big cities. Although some attempts are being made to minimize and recover garbage, landfill disposal continues to be the dominant method of waste disposal. An improper landfill site can negatively impact the environment, the economy, and the environment. Thus, it should be carefully chosen, taking into consideration both rules and standards from other sources. To examine all aspects of this study, an integration of the “Geographic Information System (GIS)” and the “Analytic Hierarchy Process (AHP)” was incorporated for land-fill site selection. Various parameters were examined to make decisions about landfill site selection. These parameters included slope, elevation, soil texture, LULC, surface water, groundwater table, road network, historical areas, and residential areas. An analytic-hierarchy process was used to determine the relative importance of each parameter, and a final site suitability map was created. With an equal interval classification method, the final index model was categorized into four categories, which included “unsuitable”, “less suitable”, “moderately suitable” and “suitable”. As a result, 30.28% of the study area was less suitable, 28.49% was moderately suitable, 12.39% was suitable, and 28.84% of the study area was unsuitable for landfilling.
Mostrar más [+] Menos [-]Pattern Characterization of Meteorological Drought Using Multivariate Drought Index Over Mirzapur in Middle Gangetic Plains of India
2023
Shivani Gond, Nitesh Gupta, P. K. S. Dikshit and Shyam Bihari Dwivedi
Droughts and floods have been occurring at a higher frequency in recent decades. The rapid transition between them magnifies the socio-economic consequences of these catastrophes relative to the effects of the individual occurrences of the extreme event. This study examines the temporal variability of meteorological drought and wet event characteristics occurring over Mirzapur (Uttar Pradesh), India. The Standardized Precipitation Evapotranspiration Index (SPEI) is applied to monthly water balance at scales 3, 6, 9, and 12 months to estimate the meteorological drought and wet events from 1971 to 2018. Drought and wet event characteristics such as the number of drought/wet events, severity, duration, and intensity are estimated using run theory over SPEI output. While characterizing the pattern of trends over the historical time period, variable-sized cluster analysis (VSCA) allows the detection of multiple change points as opposed to the Mann-Kendall (MK) test, which produces a monotonic trend for the entire time period. The VSCA technique accounts for drought variability and depicts the pattern’s evolution across the period under consideration. Station-scale drought data from Mirzapur, Uttar Pradesh (UP), India, were used in the procedure. VSCA allows for the detection of many change points while describing the pattern of drought trend throughout a historical period, as opposed to the usual Mann-Kendall (MK) test, which provides a monotonic trend for the whole time. As a result, VSCA demonstrated the MK test compatibility.
Mostrar más [+] Menos [-]Utilization of Enterobacter cloacae WW1 Biomass for Biosorption of Lead(II) from Aqueous Solution
2023
S. Thongkrua and A. Kasuya
The present study evaluated lead biosorption by Enterobacter cloacae WW1 isolated from tannery wastewaters under different initial Pb2+ concentrations, biomass concentrations, and contact times. The results showed that at an initial Pb2+ concentration of 80 mg.L-1, the optimal conditions for living cells were a biomass concentration of 7 g.L-1 and a contact time of 120 min. For non-living cells, biomass was a biomass concentration of 4 g.L-1 and contact time of 45 min, which provided removal efficiencies of 92.03 ± 0.10% and 99.51 ± 0.01%, respectively. The maximum biosorption capacity obtained for non-living cells using an initial Pb2+ concentration of 640 mg.L-1 was 76.65 ± 0.05 mg.g-1. The equilibrium data followed the Langmuir and Freundlich models for living cells, and the data for non-living cell biosorbents fit the Langmuir model. The biosorption kinetics for living and non-living cells fit well with a pseudo-second-order kinetic equation. SEM-EDX analysis clearly showed the morphology and presence of Pb2+ particles on non-living cell surfaces after biosorption. In addition, the results revealed that functional groups such as hydroxyl, amino, carboxyl, amide, and phosphate groups on the bacterial cell surface detected by FTIR were associated with the binding of Pb2+ ions. The results indicated that E. cloacae WW1, a lead-resistant bacterium, can be used as an alternative biosorbent for lead removal from wastewater.
Mostrar más [+] Menos [-]Experimental Study on Heat Recovery of Air Dryer from Waste Heat Energy of Condensing Unit from VCRS Air Conditioner
2023
S. N. Yaakop, M. H. F. Md Fauadi and A. A. Muhammad Damanhuri
Heating, Ventilating, and Air Conditioning (HVAC) is a system to condition indoor air by cooling or heating to achieve thermal comfort for a human being. The HVAC system operates based on the refrigeration cycle, where heat is dissipated from the condensing unit in the warm air arrangement. This represents an ironic foundation of heat that might be recovered for further schemes or applications. In this paper, experimental work was developed to validate the proposed heat recovery system using heated air released from the condenser unit of the HVAC system as a source for the air dryer for the drying rack. Four different output parameters are to be observed in this research: the dry-bulb temperature of the air exit from the condenser unit, the dry-bulb temperature of the air inflowing the dryer, and the drying time and the relative humidity of the air leaving the dryer. These experimental works were conducted using a domestic application of a 1.0 hp air conditioning (AC) system with R-22 refrigerant gas and based on the following factors: The three-variant mass of wet clothes, the three-stage of mechanical fan speed for releasing warm air from the condenser, and the effect of variable ambient or surrounding air dry-bulb temperature were studied. A physical prototype of the dryer was constructed for proof-of-concept purposes. The experimental output was then analyzed to obtain precision and accurate data. To determine the system behavior, a refrigeration cycle analysis was conducted. It has been shown that an AC system of 1.0 hp can cover wet clothes drying of weights 1950 g, 4255 g, and 6350 g at 55, 80, and 110 min with a constant air velocity of 0.34 m-3.s-1 in an ambient temperature of 33°C. The significant contribution of this research is the proposed heat-recovery-based air dryer system with the capability to increase the Coefficient of Performance (COP) of the AC unit from 2.36 to 2.70. Hence, the energy-saving was received using the heat-recovered-based air dryer instead of a commercial electric air dryer system that uses high power consumption from their heater element.
Mostrar más [+] Menos [-]Evaluation of the Energy Factor and Equivalent CO2 Gas Emission by Utilization of Industrial By-products in Concrete for Environmental Protection
2023
B. Saravanan, R. Divahar, S. P. Sangeetha and M. Bhuvaneshwari
Climate change and global warming are two of the world’s most pressing environmental issues. With CO2 being one of the most significant greenhouse gases released into the atmosphere, and cement and concrete manufacturing accounting for roughly 10% of worldwide CO2 emissions, the construction sector must employ an environmentally sustainable substance as a substitute for cement. The CO2 emissions, energy factor, and strength qualities of concrete were investigated. Those negative reaction of conventional cementitious substances is reduced by the development of binary and ternary cementitious systems. In this study, two mineral admixtures obtained from industrial waste substances, red mud (RM) and silica fume (SF), had been used as the alternatives for cement and fine aggregate was fully replaced by manufactured sand (M-sand). An experimental examination of the compressive strength, water absorption, density of concrete, equivalent CO2 emission, and energy factor for environmental benefits with the comparison of RM on SF-based eco-friendly concrete mix of M30 grade was used. A binary and ternary blended cementitious system with RM and SM was created with twelve various mix proportions, varying from 0-20% by 5% increases. From the binary blended cementitious system (BBS), based on the observed mechanical characteristic of concrete it was found that the optimum level of RM was 15% and SF was 10 % by the volume of cement. Similarly, for the ternary blended cementitious system (TBS), the level of 10% RM and 10% SF in the cement mixture provides a much higher improvement in compression strength compared to the alternative trials. The negative sign implies that replacing cement with RM and SF reduces energy consumption (-1.91% to -6.97%) and CO2 emissions (-4.52% to -16.16%). The use of mineral admixtures such as RM and SM in supplementary cementitious materials results in a significant outcome and potential impact on the production of sustainable concrete that addresses environmental issues.
Mostrar más [+] Menos [-]Evapotranspiration Over the Indian Region: Implications of Climate Change and Land Use/Land Cover Change
2023
Garima Singh and Sudhir Kumar Singh
Evapotranspiration (ET) plays a significant role in climatic studies, directly influencing the hydrological cycle, energy balance equation, and surface vegetation. ET comprises three components: bare soil or ground evaporation, evaporation, and transpiration, in which vegetation removes water influenced by food grain production. In turn, soil moisture availability depends on precipitation characteristics over land, surface net radiation, and wind speed are the major climatic factors that together determine the magnitude of ET. This controls moisture availability in the lower troposphere, hence atmospheric stability, chances of cloud formation, and precipitation. Though the study of evapotranspiration is important for determining agricultural water consumption and analyzing drought situations, there is a lot of uncertainty in its accurate estimation. Land use/Land cover changes (LULCC) occurring throughout the Indian subcontinent have been found to affect the characteristics of low to moderate rainfall events and surface temperature extremes (Halder et al. 2016). A global warming scenario will change the hydrological cycle, and the impact of anthropogenic factors has also necessitated the need to understand the mechanisms that control changes in ET over India. In this study, we want to analyze the relationship between transpiration and the Normalized Difference Vegetation Index (NDVI) and investigate the relationship between canopy interception with respect to NDVI all over the Indian region. Attempts have been made to assess the impact of changes in climate and LULC on ET and its three components over the Indian region from 1981 till the present time. The monsoon season increases precipitation, and soil evaporation is found to increase at first, along with an increase in NDVI followed by canopy evaporation and transpiration. It is noted that changes in precipitation and LULCC across the Indian subcontinent have contributed significantly to changes in ET in different seasons. As variability in surface net radiation also plays an important role in controlling changes in total ET, it is being investigated.
Mostrar más [+] Menos [-]Impacts of microplastics and heavy metals on the earthworm Eisenia fetida and on soil organic carbon, nitrogen, and phosphorus
2023
Mai, Huong | Thien, Nguyen Danh | Dung, Nguyen Thuy | Valentin, Christian
Microplastics (MPs) are increasingly being studied because they have become ubiquitous in aquatic and terrestrial environments. However, little is known about the negative effects of co-contamination by polypropylene microplastic (PP MPs) and heavy metal mixtures on terrestrial environment and biota. This study assessed the adverse effects of co-exposure to PP MPs and heavy metal mixture (Cu2+, Cr6+, and Zn2+) on soil quality and the earthworm Eisenia fetida. Soil samples were collected in the Dong Cao catchment, near Hanoi, Vietnam, and analyzed for changes in extracellular enzyme activity and carbon, nitrogen, and phosphorus availability in the soil. We determined the survival rate of earthworms Eisenia fetida that had ingested MPs and two doses of heavy metals (the environmental level — 1 × — and its double — 2 ×). Earthworm ingestion rates were not significantly impacted by the exposure conditions, but the mortality rate for the 2 × exposure conditions was 100%. Metal-associated PP MPs stimulated the activities of β-glucosidase, β-N-acetyl glucosaminidase, and phosphatase enzymes in soil. Principle component analysis showed that these enzymes were positively correlated with Cu2+ and Cr6+ concentrations, but negatively correlated with microbial activity. Zn2+ showed no correlation with soil extracellular enzyme activity or soil microbial activity. Our results showed that co-exposure of earthworms to MPs and heavy metals had no impact on soil nitrogen and phosphorus but caused a decrease in total soil carbon content, with a possible associated risk of increased CO2 emissions.
Mostrar más [+] Menos [-]Ozone exposure and health risks of different age structures in major urban agglomerations in People’s Republic of China from 2013 to 2018
2023
Yang, Lu | Hong, Song | Mu, Hang | Zhou, Jingwei | He, Chao | Wu, Qian | Gong, Xi
High concentration of surface ozone (O3) will cause health risks to people. In order to analyze the spatiotemporal characteristics of O3 and assess O3 exposure and health risks for different age groups in China, we applied multiple methods including standard deviation ellipse, spatial autocorrelation, and exposure–response functions. Results show that O3 concentrations increased in 64.5% of areas in China from 2013 to 2018. The central plain urban agglomeration (CPU), Beijing-Tianjin-Hebei (BTH), and Yangtze River Delta (YRD) witnessed the greatest incremental rates of O3 by 16.7%, 14.3%, and 13.1%. Spatially, the trend of O3 shows a significant positive autocorrelation, and high trend values primarily in central and east China. The proportion of the total population exposed to high O3 (above 160 μg/m3) increased annually. Compared to 2013, the proportion of the young, adult, and old populations exposed to high O3 increased to different extents in 2018 by 26.8%, 29.6%, and 27.2%, respectively. The extent of population exposure risk areas in China expanded in size, particularly in north and east China. The total premature respiratory mortalities attributable to long-term O3 exposure in six urban agglomerations were about 177,000 in 2018 which has increased by 16.4% compared to that in 2013. Among different age groups, old people are more vulnerable to O3 pollution, so we need to strengthen their relevant health protection of them.
Mostrar más [+] Menos [-]