Refinar búsqueda
Resultados 481-490 de 4,074
Interplay of metals and bromine with dioxin-related compounds concentrated in e-waste open burning soil from Agbogbloshie in Accra, Ghana
2016
Fujimori, Takashi | Itai, Takaaki | Goto, Akitoshi | Asante, Kwadwo A. | Otsuka, Masanari | Takahashi, Shin | Tanabe, Shinsuke
Open burning of electronic waste (e-waste) releases various metals and organohalogen compounds in the environment. Here we investigated the interplay of metals (Cu, Pb, Zn, Fe, Co, and Sr) and bromine (Br) in the formation of dioxin-related compounds (DRCs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs), as well as non-regulated DRCs such as polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) and their monobrominated PCDD/Fs in soils sampled from open burning e-waste sites at Agbogbloshie in Accra, Ghana. The predominant DRCs were PBDFs, PCDFs, PCDDs, and DL-PCBs. Statistical analyzes, X-ray absorption spectroscopy, and the PCDF/PCDD ratio suggested possible formation paths of PCDD/Fs and DL-PCBs by catalytic behaviors of copper chlorides (CuCl, CuCl2, and Cu2(OH)3Cl) and thermal breakdown of polyvinyl chloride. Predominant formation of brominated furans may be derived from electron transfer from intermediates of PBDE to copper, Cu(II) → Cu(I). Lead chloride also contributed to generate DRCs and may become highly bioaccessible through the open burning of e-waste. The main zinc species (ZnCl2 and ZnS) suggested a possible relationship to generate DRCs and specific zinc source such as tire burning. Cu, Pb, Zn, and Br contained in various e-wastes, wires/cables, plastics, and tires strongly influenced generation of many DRCs.
Mostrar más [+] Menos [-]Concentrations, distribution, sources and risk assessment of organohalogenated contaminants in soils from Kenya, Eastern Africa
2016
Sun, Hongwei | Qi, Yueling | Zhang, Di | Li, Qing X. | Wang, Jun
The organohalogenated contaminants (OCs) including 12 organochlorine pesticides (OCPs), 7 indicator polychlorinated biphenyls (PCBs) and 7 polybrominated diphenyl ethers (PBDEs) were determined in soils collected from Kenya, Eastern Africa. The total OCPs fell in the range of n.d–49.74 μg kg⁻¹ dry weight (dw), which was dominated by DDTs and endosulfan. Identification of pollution sources indicated new input of DDTs for malaria control in Kenya. The total PCBs ranged from n.d. to 55.49 μg kg⁻¹ dw, dominated by penta- and hexa-PCBs, probably associated with the leakage of obsolete transformer oil. The soils were less contaminated by PBDEs, ranging from 0.19 to 35.64 μg kg⁻¹ dw. The predominant PBDE congeners were penta-, tri- or tetra-BDEs, varying among different sampling sites. Risk assessment indicated potential human health risks posed by OCs in soils from Kenya, with PCBs as the most contributing pollutants. The local authorities are recommended to make best efforts on management of OC pollution, particularly from DDTs and PCBs to meet the requirement of Stockholm Convention.
Mostrar más [+] Menos [-]Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity
2016
Gutiérrez, Carmen | Fernández, Carlos | Escuer, Miguel | Campos-Herrera, Raquel | Beltrán Rodríguez, Mª Eulalia | Carbonell, Gregoria | Rodríguez Martín, Jose Antonio
Among soil organisms, nematodes are seen as the most promising candidates for bioindications of soil health. We hypothesized that the soil nematode community structure would differ in three land use areas (agricultural, forest and industrial soils), be modulated by soil parameters (N, P, K, pH, SOM, CaCO3, granulometric fraction, etc.), and strongly affected by high levels of heavy metals (Cd, Pb, Zn, Cr, Ni, Cu, and Hg) and emerging contaminants (pharmaceuticals and personal care products, PPCPs). Although these pollutants did not significantly affect the total number of free-living nematodes, diversity and structure community indices vastly altered. Our data showed that whereas nematodes with r-strategy were tolerant, genera with k-strategy were negatively affected by the selected pollutants. These effects diminished in soils with high levels of heavy metals given their adaptation to the historical pollution in this area, but not to emerging pollutants like PPCPs.
Mostrar más [+] Menos [-]Current levels and trends of selected EU Water Framework Directive priority substances in freshwater fish from the German environmental specimen bank
2016
Fliedner, Annette | Lohmann, Nina | Rüdel, Heinz | Teubner, Diana | Wellmitz, Jörg | Koschorreck, Jan
Under the German environmental specimen bank programme bream (Abramis brama) were sampled in six German rivers and analysed for the priority hazardous substances dicofol, hexabromocyclododecane (HBCDD), hexachlorobenzene (HCB), hexachlorobutadiene (HCBD), heptachlor + heptachlor epoxide (HC + HCE), polybrominated diphenylethers (PBDEs), polychlorinated dibenzo-p-dioxins and -furans and dioxin-like polychlorinated biphenyls (PCDD/Fs + dl-PCBs), and perfluorooctane sulfonic acid (PFOS). The aim was to assess compliance with the EU Water Framework Directive environmental quality standards for biota (EQSBiota) for the year 2013, and to analyse temporal trends for those substances that are of special concern. General compliance was observed for dicofol, HBCDD and HCBD whereas PBDEs exceeded the EQSBiota at all sites. For all other substances compliance in 2013 varied between locations. No assessment was possible for HC + HCE at some sites where the analytical sensitivity was not sufficient to cover the EQSBiota. Trend analysis showed decreasing linear trends for HCB and PFOS at most sampling sites between 1995 and 2014 indicating that the emission reduction measures are effective. Mostly decreasing trends or constant levels were also observed for PCDD/Fs and dl-PCBs. In contrast, increasing trends were detected for PBDEs and HBCDD which were especially pronounced at one Saar site located downstream of the industries and conurbation of Saarbrücken and Völklingen. This finding points to new sources of emissions which should be followed in the coming years.
Mostrar más [+] Menos [-]Increase in dust storm related PM10 concentrations: A time series analysis of 2001–2015
2016
Krasnov, Helena | Katra, Itzhak | Friger, Michael
Over the last decades, changes in dust storms characteristics have been observed in different parts of the world. The changing frequency of dust storms in the southeastern Mediterranean has led to growing concern regarding atmospheric PM10 levels. A classic time series additive model was used in order to describe and evaluate the changes in PM10 concentrations during dust storm days in different cities in Israel, which is located at the margins of the global dust belt. The analysis revealed variations in the number of dust events and PM10 concentrations during 2001–2015. A significant increase in PM10 concentrations was identified since 2009 in the arid city of Beer Sheva, southern Israel. Average PM10 concentrations during dust days before 2009 were 406, 312, and 364 μg m−3 (median 337, 269,302) for Beer Sheva, Rehovot (central Israel) and Modi'in (eastern Israel), respectively. After 2009 the average concentrations in these cities during dust storms were 536, 466, and 428 μg m−3 (median 382, 335, 338), respectively. Regression analysis revealed associations between PM10 variations and seasonality, wind speed, as well as relative humidity. The trends and periodicity are stronger in the southern part of Israel, where higher PM10 concentrations are found. Since 2009 dust events became more extreme with much higher daily and hourly levels. The findings demonstrate that in the arid area variations of dust storms can be quantified easier through PM10 levels over a relatively short time scale of several years.
Mostrar más [+] Menos [-]Impact of chloride on denitrification potential in roadside wetlands
2016
Lancaster, Nakita A. | Bushey, Joseph T. | Tobias, Craig R. | Song, Bongkeun | Vadas, Timothy M.
Developed landscapes are exposed to changes in hydrology and water chemistry that limit their ability to mitigate detrimental impacts to coastal water bodies, particularly those that result from stormwater runoff. The elevated level of impervious cover increases not only runoff but also contaminant loading of nutrients, metals, and road salt used for deicing to water bodies. Here we investigate the impact that road salt has on denitrification in roadside environments. Sediments were collected from a series of forested and roadside wetlands and acclimated with a range of Cl− concentrations from 0 to 5000 mg L−1 for 96 h. Denitrification rates were measured by the isotope pairing technique using 15N–NO3−, while denitrifying community structures were compared using terminal restriction fragment length polymorphism (T-RFLP) of nitrous oxide reductase genes (nosZ). Chloride significantly (p < 0.05) inhibited denitrification in forested wetlands at a Cl− dosage of 2500 or 5000 mg L−1, but the decrease in denitrification rates was less and not significant for the roadside wetlands historically exposed to elevated concentrations of Cl−. The difference could not be attributed to other significant changes in conditions, such as DOC concentrations, N species concentrations, or pH levels. Denitrifying communities, as measured by T-RFs of the nosZ gene, in the roadside wetlands with elevated concentration of Cl− were distinctly different and more diverse compared to forested wetlands, and also different in roadside wetlands after 96 h exposures to Cl−. The shifts in denitrifying communities seem to minimize the decrease in denitrification rates in the wetlands previously exposed to Cl. As development results in more Cl− use and exposure to a broad range of natural or manmade wetland structures, an understanding of the seasonal effect of Cl on denitrification processes in these systems would aid in design or mitigation of the effects on N removal rates.
Mostrar más [+] Menos [-]Effect of bacteria on the transport and deposition of multi-walled carbon nanotubes in saturated porous media
2016
Han, Peng | Zhou, Dan | Tong, Meiping | Kim, Hyŏn-jŏng
The influence of bacteria on the transport and deposition behaviors of carbon nanotubes (CNTs) in quartz sand was examined in both NaCl (5 and 25 mM ionic strength) and CaCl2 (0.3 and 1.2 mM ionic strength) solutions at unadjusted pH (5.6–5.8) by direct comparison of both breakthrough curves and retained profiles in both the presence and absence of bacteria. Two types of widely utilized CNTs, i.e., carboxyl- and hydroxyl-functionalized multi-walled carbon nanotubes (MWCNT-COOH and MWCNT-OH, respectively), were employed as model CNTs and Escherichia coli was utilized as the model bacterium. The results showed that, for both types of MWCNTs under all examined conditions, the breakthrough curves were higher in the presence of bacteria, while the retained profiles were lower, indicating that the co-presence of bacteria in suspension increased the transport and decreased the deposition of MWCNTs in porous media, regardless of ionic strength or ion valence. Complementary characterizations and extra column tests demonstrated that competition by bacteria for deposition sites on the quartz sand surfaces was a major (and possibly the sole) contributor to the enhanced MWCNTs transport in porous media.
Mostrar más [+] Menos [-]Facile synthesis of 55Fe-labeled well-dispersible hematite nanoparticles for bioaccumulation studies in nanotoxicology
2016
Huang, Bin | Xiao, Lin | Yang, Liu-Yan | Ji, Rong | Miao, Ai-Jun
Although water-dispersible engineered nanoparticles (ENPs) have a wide range of applications, the ENPs used in many nanotoxicological studies tend to form micron-sized aggregates in the exposure media and thus cannot reflect the toxicity of real nanoparticles. Here we described the synthesis of bare hematite nanoparticles (HNPs-0) and two poly(acrylic acid) (PAA)-coated forms (HNPs-1 and HNPs-2). All three HNPs were well dispersed in deionized water, but HNPs-0 quickly aggregated in the three culture media tested. By contrast, the suspensions of HNPs-1 and HNPs-2 remained stable, with negligible amounts of PAA and Fe3+ liberated from either one under the investigated conditions. To better quantify the accumulation of the coated HNPs, a relatively innocuous 55Fe-labeled form of HNPs-2 was synthesized as an example and its accumulation in three phytoplankton species was tested. Consistent with the uptake kinetics model for conventional pollutants, the cellular accumulation of HNPs-2 increased linearly with exposure time for two of the three phytoplankton species. These results demonstrate the utility of 55Fe-labeled well-dispersible HNPs as a model material for nanoparticle bioaccumulation studies in nanotoxicology.
Mostrar más [+] Menos [-]Revealing ecological risks of priority endocrine disrupting chemicals in four marine protected areas in Hong Kong through an integrative approach
2016
Xu, Elvis Genbo | Ho, Philip Wing-Lok | Tse, Zero | Ho, Shu-Leong | Leung, Kenneth Mei Yee
Marine Protected Areas (MPAs) in Hong Kong are situated in close proximity to urbanized areas, and inevitably influenced by wastewater discharges and antifouling biocides leached from vessels. Hence, marine organisms inhabiting these MPAs are probably at risk. Here an integrative approach was employed to comprehensively assess ecological risks of eight priority endocrine disrupting chemicals (EDCs) in four MPAs of Hong Kong. We quantified their concentrations in environmental and biota samples collected in different seasons during 2013–2014, while mussels (Septifer virgatus) and semi-permeable membrane devices were deployed to determine the extent of accumulation of the EDCs. Extracts from the environmental samples were subjected to the yeast estrogen screen and a novel human cell-based catechol-O-methyltransferase ELISA to evaluate their estrogenic activities. The results indicated ecological risks of EDCs in the Cape d'Aguilar Marine Reserve. This integrated approach can effectively evaluate ecological risks of EDCs through linking their concentrations to biological effects.
Mostrar más [+] Menos [-]Arsenic(V) adsorption-desorption in agricultural and mine soils: Effects of organic matter addition and phosphate competition
2016
Arco-Lázaro, Elena | Agudo, Inés | Clemente, Rafael | Bernal, M Pilar
High total and bioavailable concentrations of As in soils represent a potential risk for groundwater contamination and entry in the food chain. The use of organic amendments in the remediation of As-contaminated soils has been found to produce distinct effects on the solubility of As in the soil. Therefore, knowledge about As adsorption-desorption processes that govern its solubility in soil is of relevance in order to predict the behaviour of this element during these processes. In this paper, the objective was to determine As adsorption and desorption in four different soils, with and without compost addition, and also in competition with phosphate, through the determination of sorption isotherms. Batch experiments were carried out using three soils affected differently by previous mining activity of the Sierra Minera of La Unión-Cartagena (SE Spain) and an agricultural soil from Segovia province (central Spain). Adsorption was higher in the mining soils (and highest in the acidic one) than in the agricultural soils, although the latter were not affected negatively by organic matter or phosphate competition for sorption sites. The results show that As adsorption in most soils, both with and without compost, fitted better a multimolecular layer model (Freundlich), whereas As adsorption in competition with P fitted a monolayer model (Langmuir). Moreover, the use of compost and phosphate reduced the adsorption of As in the mining soils, while in the agricultural soils compost increased their low adsorption capacity. Therefore, the use of compost can be a good option to favour As immobilisation in soils of low adsorption, but knowledge of the soil composition will be crucial to predict the effects of organic amendments on As solubility in soils and its associated environmental risk.
Mostrar más [+] Menos [-]