Refinar búsqueda
Resultados 501-510 de 7,921
Multimedia distribution and trophic transfer of PPCPs in the middle and lower reaches of the Yarlung Zangbo River
2021
Sun, Yu | Lü, Guanghua | Li, Jin | Dang, Tianjian | Xue, Chenwang | Liu, Jianchao | Yan, Zhenhua
The increasing human presence is having an impact on plateau ecosystems, but the special environment and lack of data make it difficult to assess the real ecological risks of pharmaceutical and personal care products (PPCPs) in the river of plateau. The occurrence, distribution and trophic transfer of nineteen PPCPs were investigated in the middle and lower reaches of the Yarlung Zangbo River on the Tibetan Plateau. All the targeted PPCPs were detected in filtrated water, and seventeen PPCPs were detected in the colloid, sediment and suspended particulate matter (SPM). The distribution coefficients of colloid-infiltration water (IFW) were 1–2 orders of magnitude larger than those in the SPM-IFW, which were 1–2 orders of magnitude greater than those in the sediment-IFW. Colloids are sinks for PPCPs with up to 78.55% of the water being in the colloidal phase, in which important factors such as protein and protein-like substances are found. PPCPs in the rivers of the plateau showed high bioaccumulation ability. The fugacity-based bioaccumulation model was established and revealed that the fish in the Tibetan Plateau ingested PPCPs mainly through water instead of food and excreted them mainly through metabolism. In addition, the trophic dilution effect in the food web was observed with trophic magnification factors ranging from 0.06 to 0.22. The positive correlation between the Kd in the colloid-IFW and the bioaccumulation factors implied that natural colloids can not only regulate the behaviour of PPCPs in the environment, but also play an important role in bioaccumulation, which may affect the scientific nature of biological risk assessment.
Mostrar más [+] Menos [-]Short-term variability of bisphenols in spot, morning void and 24-hour urine samples
2021
Gys, Celine | Bastiaensen, Michiel | Malarvannan, Govindan | Ait Bamai, Yu | Araki, Atsuko | Covaci, Adrian
Due to worldwide regulations on the application of the high production volume industrial chemical bisphenol A (BPA) in various consumer products, alternative bisphenols such as bisphenol F (BPF) and bisphenol S (BPS) are increasingly used. To assess human exposure to these chemicals, biomonitoring of urinary concentrations is frequently used. However, the short-term variability of alternative bisphenols has not been evaluated thoroughly yet, which is essential to achieve a correct estimation of exposure. In this study, we collected all spot urine samples from ten healthy adults for five consecutive days, and an additional 24 h pooled sample. We measured the concentrations of seven bisphenols (BPAF, BPF, BPA, BPB, BPZ, BPS and BPAP) in these samples using gas chromatography coupled to tandem mass spectrometry. BPA, BPF and BPS were frequently found in spot samples (>80%), while bisphenol AP (BPAP) was detected in 43% of spot samples. Calculations of intra-class correlation coefficients (ICCs) showed that reproducibility of these four bisphenols was relatively poor (<0.01–0.200) but improved when concentrations were corrected for urine dilution using creatinine levels (0.128–0.401). Of these four bisphenols, BPF showed the best reproducibility (ICC 0.200–0.439) and BPS the most variability (ICC <0.01–0.128). In general, the within-participant variability of bisphenol levels was the largest contributor to the total variance (47–100%). We compared repeated first morning voids to 24 h pooled urine and found no significantly different concentrations for BPA, BPF, BPS, or BPAP. Levels of BPA and BPF differed significantly depending on the sampling time throughout the day. The findings in this study suggest that collecting multiple samples per participant over a few days, in predefined time windows throughout the day, could result in a more reliable estimation of internal exposure to bisphenols.
Mostrar más [+] Menos [-]Atmospheric phthalate pollution in plastic agricultural greenhouses in Shaanxi Province, China
2021
Wang, Xinkai | Zhang, Yanxia | Huang, Biao | Chen, Zhikun | Zhong, Ming | Wang, Weixi | Liu, Xiaofei | Fan, Ya’ nan | Hu, Wenyou
Phthalate pollution in soil and vegetables in plastic agricultural greenhouses has attracted wide concern. Investigating airborne phthalates in this environment can improve understanding of air-soil or air-vegetable phthalate migration. However, studies of phthalates in plastic agricultural greenhouse air are rare. To fill this gap, 25 gas-phase and 23 particle-phase samples were collected from 12 typical plastic greenhouses in Shaanxi. 16 types of phthalates were measured by a gas chromatography-mass spectrometry system (GC-MS) to analyse their pollution features and variations. Results showed that in the air of the plastic greenhouses, the median concentration of the sum of sixteen type phthalates (∑₁₆ phthalates) was 5305 ng m⁻³, with 5th-95th value of 1214–9616 ng m⁻³. Phthalates in gas-phase samples were over 100 times higher than the levels in particle-phase samples. Air phthalate concentrations in the plastic greenhouses were higher than those in the control groups (P < 0.05). Air bis (2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) accounted for 66.9% and 29.3% of total ∑₁₆ phthalate concentrations, respectively. Air phthalate concentrations in the plastic greenhouses in winter were 1.1–5.3 times higher than the levels in summer respectively (P < 0.05). Gas-particle partition coefficients (KP) values of DEHP in summer (median of 1.52 × 10⁻⁴ m³ μg⁻¹) were higher than KP values of DnBP in summer (0.60 × 10⁻⁴ m³ μg⁻¹). Log-transformed KP values of DnBP and DEHP were linear correlated to the reciprocal of air temperatures, respectively (P < 0.05).
Mostrar más [+] Menos [-]Size−resolved source apportionment of particulate matter from a megacity in northern China based on one-year measurement of inorganic and organic components
2021
Tian, Yingze | Harrison, Roy M. | Feng, Yinchang | Shi, Zongbo | Liang, Yongli | Li, Yixuan | Xue, Qianqian | Xu, Jingsha
This research apportioned size-resolved particulate matter (PM) contributions in a megacity in northern China based on a full year of measurements of both inorganic and organic markers. Ions, elements, carbon fractions, n-alkanes, polycyclic aromatic hydrocarbons (PAHs), hopanes and steranes in 9 p.m. size fractions were analyzed. High molecular weight PAHs concentrated in fine PM, while most other organic compounds showed two peaks. Both two-way and three-way receptor models were used for source apportionment of PM in different size ranges. The three-way receptor model gave a clearer separation of factors than the two-way model, because it uses a combination of chemical composition and size distributions, so that factors with similar composition but distinct size distributions (like more mature and less mature coal combustion) can be resolved. The three-way model resolved six primary and three secondary factors. Gasoline vehicles and coal and biomass combustion, nitrate and high relative humidity related secondary aerosol, and resuspended dust and diesel vehicles (exhaust and non-exhaust) are the top two contributors to pseudo-ultrafine (<0.43 μm), fine (0.43–2.1 μm) and coarse mode (>2.1 μm) PM, respectively. Mass concentration of PM from coal and biomass combustion, industrial emissions, and diesel vehicle sources showed a bimodal size distribution, but gasoline vehicles and resuspended dust exhibited a peak in the fine and coarse mode, separately. Mass concentration of sulphate, nitrate and secondary organic aerosol exhibited a bimodal distribution and were correlated with temperature, indicating strong photochemical processing and repartitioning. High relative humidity related secondary aerosol was strongly associated with size shifts of PM, NO₃⁻ and SO₄²⁻ from the usual 0.43–0.65 μm to 1.1–2.1 μm. Our results demonstrated the dominance of primary combustion sources in the <0.43 μm particle mass, in contrast to that of secondary aerosol in fine particle mass, and dust in coarse particle mass in the Northern China megacity.
Mostrar más [+] Menos [-]A novel method to evaluate chemical concentrations in muddy and sandy coastal regions before and after oil exposures
2021
Xia, Junfei | Zhang, Wei | Ferguson, Alesia C. | Mena, Kristina D. | Özgökmen, Tamay M. | Solo-Gabriele, Helena M.
Oil spills can result in changes in chemical concentrations along coastlines. In prior work, these concentration changes were used to evaluate the date sediment was impacted by oil (i.e., oil exposure date). The objective of the current study was to build upon prior work by using the oil exposure date to compute oil spill chemical (OSC) concentrations in shoreline sediments before and after exposure. The new method was applied to OSC concentration measures collected during the Deepwater Horizon oil spill with an emphasis on evaluating before and after concentrations in muddy versus sandy regions. The procedure defined a grid that overlaid coastal areas with chemical concentration measurement locations. These grids were then aggregated into clusters to allow the assignment of chemical concentration measurements to a uniform coastal type. Performance of the method was illustrated for ten chemicals individually by cluster, and collectively for all chemicals and all clusters. Results show statistically significant differences between chemical concentrations before and after the calculated oil exposure dates (p < 0.04 for each of the 10 chemicals within the identified clusters). When aggregating all chemical measures collectively across all clusters, chemical concentrations were lower before oil exposure in comparison to after (p < 0.0001). Sandy coastlines exhibited lower chemical concentrations relative to muddy coastlines (p < 0.0001). Overall, the method developed is a useful first step for establishing baseline chemical concentrations and for assessing the impacts of disasters on sediment quality within different coastline types. Results may be also useful for assessing added ecological and human health risks associated with oil spills.
Mostrar más [+] Menos [-]Continuously observed light absorbing impurities in snow cover over the southern Altai Mts. in China: Concentrations, impacts and potential sources
2021
Zhong, Xinyue | Kang, Shichang | Zhang, Wei | Yang, Junhua | Niu, Hewen | Liu, Yajun | Guo, Junming | Li, Xiaofei | Chen, Pengfei | Wang, Xiaoxiang
The deposition of light absorbing impurities (LAIs) (e.g., black carbon (BC), organic carbon (OC), mineral dust (MD)) on snow is an important attribution to accelerate snowmelt across the northern Xinjiang, China. At present, there is still a lack of understanding of the LAIs concentration, elution and enrichment process in snow cover over Xinjiang. Based on these, continuously sampling during two years carried out to investigate the concentrations, impacts and potential sources of LAIs in snow at Kuwei Station in the southern Altai Mountains. The average concentrations of BC, OC and MD in the surface snow were 2787 ± 2334 ng g⁻¹, 6130 ± 6127 ng g⁻¹, and 70.03 ± 62.59 μg g⁻¹, respectively, which dramatically increased along with snowmelt intensified, reflecting a significant enrichment process of LAIs at the snow surface. Besides, high LAIs concentrations also found in the subsurface and melting layers of the snowpit, reflecting the elution and redistribution of LAIs. With the simulation of the SNow ICe Aerosol Radiative model, BC was the main dominant factor in reducing snow albedo and radiative forcing (RF), its impact was more remarkable in the snowmelt period. The average contribution rates of BC, MD and BC + MD to snow albedo reduction increased by 20.0 ± 1.9%, 13.0 ± 0.2%, and 20.5 ± 2.3% in spring compared with that in winter; meanwhile, the corresponding average RFs increased by 15.8 ± 3.4 W m⁻², 4.7 ± 0.3 W m⁻² and 16.4 ± 3.2 W m⁻², respectively. Changes in the number of snowmelt days caused by BC and MD decreased by 3.0 ± 0.4 d to 8.3 ± 1.3 d. It indicated that surface enrichment of LAIs during snow melting might accelerate snowmelt further. Weather Research and Forecasting Chemistry model showed that the resident emission was the main potential source of BC and OC in snow. This implied that the mitigation of intensive snowmelt needs to mainly reduce resident emission of LAIs in the future.
Mostrar más [+] Menos [-]Effect of source variation on the size and mixing state of black carbon aerosol in urban Beijing from 2013 to 2019: Implication on light absorption
2021
Wu, Yunfei | Xia, Yunjie | Wing, Omar | Tian, Ping | Tao, Jun | Huang, Ru-Jin | Liu, Dantong | Wang, Xin | Xia, Xiangao | Han, Zhiwei | Zhang, Renjian
Black carbon (BC) is the most important aerosol light-absorbing component, and its effect on radiation forcing is determined by its microphysical properties. In this study, two microphysical parameters of refractory BC (rBC), namely, size distribution and mixing state, in urban Beijing from 2013 to 2019 were investigated to understand the effects of source changes over the past years. The mass equivalent diameter of rBC (Dc) exhibited bimodal lognormal distributions in all seasons, with the major modes accounting for most (>85%) of the rBC masses. The mass median diameter (MMD) was obviously larger in winter (209 nm) than in summer (167 nm) likely due to the contribution of more rBC with larger Dc from solid fuel combustion and enhanced coagulation of rBC in polluted winter. More rBC particles were thickly coated in winter, with the number fraction of thickly coated rBC (fcₒₐₜBC) ranging within 29%–48% compared with that of 12%–14% in summer. However, no evidential increase in BC light-absorption capability was observed in winter. This finding was likely related to the lower absorption efficiency of larger rBC in winter, which partly offset the coating-induced light enhancement. Two stage of decreases in MMD and fcₒₐₜBC were observed, accompanied with a persistent decrease in rBC loading, thereby reflecting the discrepant effects of source control measures on rBC loading and physical properties. The control measures in the earlier stage before 2016 was more efficient to reduce the rBC loading but slightly influenced the microphysical properties of rBC. As of 2016, the reduction in rBC concentration slowed down because of its low atmospheric loading. However, rBC showed a more obvious decrease in its core size and became less coated. The decrease in fcₒₐₜBC may have weakened the BC absorption and accelerated the decrease in light absorption resulting from the reduction in rBC loading.
Mostrar más [+] Menos [-]Metagenomic analysis of urban wastewater resistome and mobilome: A support for antimicrobial resistance surveillance in an endemic country
2021
Rodríguez, Erika A. | Ramirez, Diego | Balcázar, José L. | Jiménez, J Natalia
In developing countries, where high levels of antimicrobial resistance are observed in hospitals, the surveillance of this phenomenon in wastewater treatment plants (WWTPs) and the environment is very limited, especially using cutting-edge culture-independent methods. In this study, the composition of bacterial communities, the resistome and mobilome (the pool of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), respectively) at a WWTP were determined using shotgun metagenomics and culture-based approaches. Wastewater samples were collected at four sampling points of a WWTP in Antioquia, Colombia. A total of 24 metagenomes were analyzed. Specifically, there were marked differences in bacterial community composition, resistome, and mobilome, according to the WWTP sampling points. Bacterial families of clinical importance such as Moraxellaceae, Aeromonadaceae, and Enterobacteriaceae were mainly detected in the WWTP influent and effluent samples. Genes encoding resistance to macrolide-lincosamide-streptogramin, β-lactams, and those conferring multidrug resistance (e.g., acrB, adeG, and mexD) were the most abundant. Moreover, some clinically important ARGs such as blaKPC₋₂ and blaCTX₋M, and others not reported locally, such as blaTEM₋₁₉₆, blaGES₋₂₃, blaOXA₋₁₀, mcr-3, and mcr-5 were frequently detected. Co-occurrence network analyses indicated a significant association of ARGs such as blaOXA₋₅₈ and blaKPC genes with Aeromonadaceae and Enterobacteriaceae. Among the markers of MGEs, intI1 and ISCR8 were the most frequently detected. Altogether, this work reveals the importance of shotgun metagenomics and culture-based approaches in antimicrobial resistance studies. The findings also support that WWTPs are hotspots for antimicrobial resistance, whose analysis constitutes a powerful tool to predict the impact of antimicrobial resistance in a population.
Mostrar más [+] Menos [-]Impact of wildfires on SO2 detoxification mechanisms in leaves of oak and beech trees
2021
Weber, Jan-Niklas | Kaufholdt, David | Minner-Meinen, Rieke | Bloem, Elke | Shahid, Afsheen | Rennenberg, H. (Heinz) | Hänsch, Robert
Frequency and intensity of wildfire occurrences are dramatically increasing worldwide due to global climate change, having a devastating effect on the entire ecosystem including plants. Moreover, distribution of fire-smoke can influence the natural environment over very long distances, i.e. hundreds of kilometres. Dry plant matter contains 0.1–0.9% (w/w) sulphur, which is mainly released during combustion into the atmosphere as sulphur dioxide (SO₂) resulting in local concentrations of up to 3000 nL L⁻¹. SO₂ is a highly hazardous gas, which enters plants mostly via the stomata. Toxic sulphite is formed inside the leaves due to conversion of SO₂. Plants as sessile organisms cannot escape from threats, why they evolved an impressive diversity of molecular defence mechanisms. In the present study, two recent wildfires in Germany were evaluated to analyse the effect of SO₂ released into the atmosphere on deciduous trees: the Meppen peat fire in 2018 and the forest fire close to Luebtheen in 2019. Collected leaf material from beech (Fagus sylvatica) and oak (Quercus robur) was examined with respect to detoxification of sulphur surplus due to the exposure to elevated SO₂. An induced stress reaction in both species was indicated by a 1.5-fold increase in oxidized glutathione. In beech leaves, the enzymatic activities of the sulphite detoxification enzymes sulphite oxidase and apoplastic peroxidases were increased 5-fold and a trend of sulphate accumulation was observed. In contrast, oaks did not regulate these enzymes during smoke exposure, however, the constitutive activity is 10-fold and 3-fold higher than in beech. These results show for the first time sulphite detoxification strategies of trees in situ after natural smoke exposure. Beech and oak trees survived short-term SO₂ fumigation due to exclusion of toxic gases and different oxidative detoxification strategies. Beeches use efficient upregulation of oxidative sulphite detoxification enzymes, while oaks hold a constitutively high enzyme-pool available.
Mostrar más [+] Menos [-]Experimental warming alleviates the adverse effects from tropospheric ozone on two urban tree species
2021
Xu, Sheng | Wang, Yijing | Zhang, Weiwei | Li, Bo | Du, Zhong | He, Xingyuan | Chen, Wei | Zhang, Yue | Li, Yan | Li, Maihe | Schaub, Marcus
Atmospheric warming and increasing tropospheric ozone (O₃) concentrations often co-occur in many cities of the world including China, adversely affecting the health status of urban trees. However, little information is known about the combined and interactive effects from increased air temperature (IT) and elevated O₃ (EO) exposures on urban tree species. Here, Ginkgo biloba and Populus alba ‘Berolinensis’ seedlings were subjected to IT (+2 °C of ambient air temperature) and/or EO (+2-fold ambient air O₃ concentrations) for one growing season by using open-top chambers. IT alone had no significant effect on physiological metabolisms at the early growing stage, but significantly increased photosynthetic parameters, antioxidative enzyme activities (P < 0.05). EO alone decreased physiological parameters except for increased oxidative stress. Compared to EO exposure alone, plants grown under IT and EO combined showed higher antioxidative and photosynthetic activity. There was a significant interactive effect between IT and EO on net photosynthetic rate, stomatal conductance, water use efficiency, the maximum quantum efficiency of PSII photochemistry, the actual quantum efficiency of PSII, enzyme activities, aboveground biomass and root/shoot ratio (P < 0.05), respectively. These results suggested that during one growing season, IT mitigated the adverse effect of EO on the tested plants. In addition, we found that G. biloba was more sensitive than P. alba ‘Berolinensis’ to both IT and EO, suggesting that G. biloba may be a good indicator species for climate warming and air pollution, particularly under environmental conditions as they co-occur in urban areas.
Mostrar más [+] Menos [-]