Refinar búsqueda
Resultados 511-520 de 6,536
Comparative study on gene expression profile in rat lung after repeated exposure to diesel and biodiesel exhausts upstream and downstream of a particle filter
2020
Lecureur, Valérie | Monteil, Christelle | Jaguin, Marie | Cazier, Fabrice | Preterre, David | Corbière, Cécile | Gosset, Pierre | Douki, Thierry | Sichel, François | Fardel, Olivier
Biodiesel is considered as a valuable and less toxic alternative to diesel. However, cellular and molecular effects of repeated exposure to biodiesel emissions from a recent engine equipped with a diesel particle filter (DPF) remain to be characterized. To gain insights about this point, the lung transcriptional signatures were analyzed for rats (n = 6 per group) exposed to filtered air, 30% rapeseed biodiesel (B30) blend or reference diesel (RF0), upstream and downstream a DPF, for 3 weeks (3 h/day, 5 days/week).Genomic analysis revealed a modest regulation of gene expression level (lower than a 2-fold) by both fuels and a higher number of genes regulated downstream the DPF than upstream, in response to either RF0 or to B30 exhaust emissions. The presence of DPF was found to notably impact the lung gene signature of rats exposed to B30. The number of genes regulated in common by both fuels was low, which is likely due to differences in concentrations of regulated pollutants in exhausts, notably for compound organic volatiles, polycyclic aromatic hydrocarbons, NO or NOx. Nevertheless, we have identified some pathways that were activated for both exhaust emissions, such as integrin-, IGF-1- and Rac-signaling pathways, likely reflecting the effects of gas phase products. By contrast, some canonical pathways relative to “oxidative phosphorylation” and “mitochondrial dysfunction” appear as specific to B30 exhaust emission; the repression of transcripts of mitochondrial respiratory chain in lung of rats exposed to B30 downstream of DPF supports the perturbation of mitochondria function.This study done with a recent diesel engine (compliant with the European IV emission standard) and commercially-available fuels reveals that the diesel blend composition and the presence of an after treatment system may modify lung gene signature of rats repeatedly exposed to exhaust emissions, however in a rather modest manner.
Mostrar más [+] Menos [-]Changes in light absorption by brown carbon in soot particles due to heterogeneous ozone aging in a smog chamber
2020
Kuang, Yu | Shang, Jing
Light absorption by brown carbon (BrC) is dynamic due to atmospheric aging processes, leading to complex and poorly constrained effects on photochemistry and climate. In this study, a smog chamber was used to simulate the heterogeneous ozone (O₃) aging of soot particles. Twelve aging times and seven O₃ concentrations were set to investigate the effects of aging degree on BrC light absorption. The results showed that light absorption by BrC was enhanced after O₃ aging, but followed a non-monotonic trend with an initial increase and subsequent decrease. An aging time of 60 min and O₃ concentration of 1.2 ppm were optimal for enhancing BrC absorption, where the contribution of BrC to total absorption and the contribution of BrC relative to black carbon absorption at 370 nm of ozonized soot were 23.0 ± 1.8% and 30.0 ± 3.0%, respectively, much greater than those of fresh soot (8.1 ± 1.1% and 8.8 ± 1.3%, respectively). The absorption Ångström exponent (AAE) and delta C (ΔC) of ozonized soot at 60 min ranged from 1.18 ± 0.01 to 1.31 ± 0.03 and from 13.5 ± 7.0 to 24.3 ± 13.5 μg m⁻³, respectively, and were greater than those of fresh soot (1.12 ± 0.02 and 8.0 ± 0.8 μg m⁻³), but also showed non-monotonic trends, suggesting the formation of BrC during O₃ aging. Comparative results indicated that AAE might be a better BrC indicator for soot than ΔC. The non-monotonic trend was tentatively explained by changes in organic carbon, oxygenated functional groups and conjugated structures, as well as polycyclic aromatic hydrocarbon (PAH) degradation and oxygenated PAH formation. The relative intensities of oxidative formation and degradation of chromophores may determine BrC evolution during O₃ aging. This study will be useful for clarifying BrC evolution in the atmosphere and estimating its radiative forcing.
Mostrar más [+] Menos [-]Ocean acidification affects biological activities of seaweeds: A case study of Sargassum vulgare from Ischia volcanic CO2 vents
2020
Kumar, Amit | Buia, Maria Cristina | Palumbo, Anna | Mohany, Mohamed | Wadaan, Mohammed A.M. | Hozzein, Wael N. | Beemster, Gerrit T.S. | AbdElgawad, Hamada
We utilized volcanic CO₂ vents at Castello Aragonese off Ischia Island as a natural laboratory to investigate the effect of lowered pH/elevated CO₂ on the bioactivities of extracts from fleshy brown algae Sargassum vulgare C. Agardh. We analysed the carbohydrate levels, antioxidant capacity, antibacterial, antifungal, antiprotozoal, anticancer properties and antimutagenic potential of the algae growing at the acidified site (pH ∼ 6.7) and those of algae growing at the nearby control site Lacco Ameno (pH∼8.1). The results of the present study show that the levels of polysaccharides fucoidan and alginate were higher in the algal population at acidified site. In general, extracts for the algal population from the acidified site showed a higher antioxidant capacity, antilipidperoxidation, antibacterial, antifungal, antiprotozoal, anticancer activities and antimutagenic potential compared to the control population. The increased bioactivity in acidified population could be due to elevated levels of bioactive compounds of algae and/or associated microbial communities. In this snapshot study, we performed bioactivity assays but did not characterize the chemistry and source of presumptive bioactive compounds. Nevertheless, the observed improvement in the medicinal properties of S. vulgare in the acidified oceans provides a promising basis for future marine drug discovery.
Mostrar más [+] Menos [-]Using a distributed air sensor network to investigate the spatiotemporal patterns of PM2.5 concentrations
2020
Cao, Rong | Li, Bai | Wang, Zhanyong | Peng, Zhong-Ren | Tao, Shikang | Lou, Shengrong
Spatiotemporal variations in PM₂.₅ are a key factor affecting personal pollution exposure levels in urban areas. However, fixed-site monitoring stations are so sparsely distributed that they hardly capture the dynamic and fine-scale variations in PM₂.₅ in urban areas with complex geographical features and urban forms. Recently, a distributed air sensor network (DASN) was deployed in Dezhou city, China, to monitor fine-scale air pollution information and obtain deep insight into variations in PM₂.₅. Based on the data collected by the DASN, this paper investigated the spatiotemporal patterns of PM₂.₅ using the time-series clustering method. The results demonstrated that there were four stages of PM₂.₅ daily variations, i.e., accumulation, continuous pollution, dispersion, and cleaning. Generally, the stage of dispersion occurred more rapidly than the stage of accumulation, and PM₂.₅ accumulated easily in warm and humid weather with low wind speeds. However, the stage of dispersion was affected mainly by high wind speeds and precipitation. Additionally, the results suggested that four variation stages did not strictly correspond to seasonal divisions. The spatial distributions of PM₂.₅ revealed that the main pollution source was located in a southeastern industrial park, which exhibited a significant impact throughout the four stages. Considering both the temporal and spatial characteristics of PM₂.₅, this study successfully identified pollution hotspots and confirmed the effect of industrial parks. The study demonstrates that the DASN has high prospective applicability for assessing the fine-scale spatial distribution of PM₂.₅, and the time-series clustering method can also assist environmental researchers in further exploring the spatiotemporal characteristics of urban air pollution.
Mostrar más [+] Menos [-]Female oxidative status in relation to calcium availability, metal pollution and offspring development in a wild passerine
2020
Espín, Silvia | Sánchez-Virosta, Pablo | Ruiz, Sandra | Eeva, Tapio
Both Ca deficiency and metal exposure may affect physiological and nutritional condition of breeding females altering their ability to deposit essential resources (e.g. Ca, antioxidants) into the eggs. This effect of the maternal investment into egg quality is not strictly limited to the embryonic period, but may persist after hatching, since nutrient levels in yolks can compromise nestling antioxidant status, growth and fledging success. The goal of this study was to investigate how metal pollution and Ca availability during the breeding season affect oxidative stress biomarkers and plasma biochemistry in adult female pied flycatchers (Ficedula hypoleuca). In addition, we aim to evaluate how maternal antioxidant status and body condition relate to breeding parameters and offspring oxidative balance. Females breeding in a metal-polluted area in SW Finland showed higher metal concentrations compared to the control area, although current levels were below the toxic level able to affect female physiology. In addition, Ca availability was not constraining female oxidative status and general health in the study area. Interestingly, our results suggested that antioxidant response to metals was better when Ca concentrations were high enough to cover the physiological Ca requirements in breeding females. There seems to be a subtle balance between the concentrations of Ca in the organism and the tolerance to metal-related effects that requires further research. This study supports that offspring oxidative balance and nestling development are affected by maternal body condition and antioxidant status.
Mostrar más [+] Menos [-]Fluoride induced mitochondrial impairment and PINK1-mediated mitophagy in Leydig cells of mice: In vivo and in vitro studies
2020
Liang, Zhen | Gao, Yan | He, Yuyang | Han, Yongli | Manthari, Ram Kumar | Tikka, Chiranjeevi | Chen, Chenkai | Wang, Jundong | Zhang, Jianhai
It is very important to explore the potential harm and underlying mechanism of fluoride due to the extensive distribution and the significant health risks of fluoride in environment. The objective of this study to investigate whether fluoride can induce mitochondrial impairment and mitophagy in testicular cells. For this, 40 male mice were randomly divided into four groups treated with 0, 0.6, 1.2, 2.4 mM NaF deionized water, respectively, for 90 days continuously. The results showed that mitophagy was triggered by F in testicular tissues, especially in the Leydig cells by transmission electron microscopy and mitophagy receptor PHB2 locations by immunofluorescence. Furthermore, TM3 Leydig cells line was employed and treated with 0, 0.125, 0.25, and 0.5 mM NaF for 24 h. The mitochondrial function indicators and mitophagy maker PHB2, COX IV and regulator PINK1 in transcript and protein levels in Leydig cells were examined by the methods of qRT-PCR, western blotting, and immunofluorescence co-localization. The results showed that fluoride decreased the mitochondrial membrane potential with a concomitant increase in the number of lysosomes. Meanwhile, fluoride exposure also increased the expressions of PINK1 and PHB2 in TM3 Leydig cells. These results revealed that fluoride could induce mitochondrial impairment and excessive PINK1/Parkin-mediated mitophagy in testicular cells, especially in Leydig cells, which could contribute to the elucidation of the mechanisms of F-induced male reproductive toxicity.
Mostrar más [+] Menos [-]Aqua regia digestion cannot completely extract Hg from biochar: A synchrotron-based study
2020
Liu, Wenfu | Feng, Yu | Zhong, Huan | Ptacek, Carol | Blowes, David | Liu, Yingying | Finfrock, Y Zou | Liu, Peng | Wang, Sheng
Mercury (Hg) is commonly extracted from solid phase samples using aqua regia for total Hg (tHg) analysis. However, uncertainties exist regarding the complete extraction of Hg by aqua regia, especially from carbonaceous materials. To investigate whether aqua regia can completely extract Hg from biochars, batch-style experiments were carried out to evaluate extraction efficiency of aqua regia with respect to Hg-loaded biochar and to characterize the residual Hg speciation and spatial distribution. Different types of biochars (raw, FeCl₃-modified, and FeSO₄-modified, prepared at different temperatures) were reacted with Hg-spiked solution before the digestion experiments. Adsorption analyses indicate the biochars were successfully loaded with Hg and that the Hg content was higher in biochars pyrolyzed at higher temperature (900 versus 300 or 600 °C). The results of digestion experiments indicate Hg could not be completely extracted from the biochars tested, with a greater percentage of residual Hg in biochars pyrolyzed at 600 (60 ± 15%) and 900 (75 ± 22%) than 300 °C (7 ± 2%). Furthermore, the fraction of residual Hg in FeSO₄-modified biochars after aqua regia digestion was significantly lower than in FeCl₃-modified and unmodified biochars. Confocal micro-X-ray fluorescence imaging (CMXRFI) showed residual Hg in biochars is concentrated on surfaces prior to digestion, but more homogeneously distributed after digestion, which indicates Hg on biochar surface is more easily digested. Hg extended X-ray absorption fine structure (EXAFS) spectra modelling showed residual Hg in biochars mainly exists as Hg(II)–Cl. These results indicate extra caution should be paid for tHg determinations using aqua regia digestion method in soil (especially in forest), sediment, and peat samples containing black carbon, activated carbon, or biochar.
Mostrar más [+] Menos [-]Source apportionment of particulate matter based on numerical simulation during a severe pollution period in Tangshan, North China
2020
He, Jianjun | Zhang, Lei | Yao, Zhanyu | Che, Huizheng | Gong, Sunling | Wang, Min | Zhao, Mengxue | Jing, Boyu
Facing serious air pollution problems, the Chinese government has taken numerous measures to prevent and control air pollution. Understanding the sources of pollutants is crucial to the prevention of air pollution. Using numerical simulation method, this study analysed the contributions of the total local emissions and local emissions from different sectors (such as industrial, traffic, resident, agricultural, and power plant emissions) to PM₂.₅ concentration, backward trajectory, and potential source regions in Tangshan, a typical heavy industrial city in north China. The impact of multi-scale meteorological conditions on source apportionment was investigated. From October 2016 to March 2017, total local emissions accounted for 46.0% of the near-surface PM₂.₅ concentration. In terms of emissions from different sectors, local industrial emissions which accounted for 23.1% of the near-surface PM₂.₅ concentration in Tangshan, were the most important pollutant source. Agricultural emissions were the second most important source, accounting for 10.3% of the near-surface PM₂.₅ concentration. The contributions of emissions from power plants, traffic, residential sources were 2.0%, 3.0%, and 7.2%, respectively. The contributions of total local emissions and emissions from different sectors depended on multi-scale meteorological conditions, and static weather significantly enhanced the contribution of regional transport to the near-surface PM₂.₅ concentration. Eight cluster backward trajectories were identified for Tangshan. The PM₂.₅ concentration for the 8 cluster trajectories significantly differed. The near-surface PM₂.₅ in urban Tangshan (receptor point) was mainly from the local emissions, and another important potential source region was Tianjin. The results of the source apportionment suggested the importance of joint prevention and control of air pollution in some areas where cities or industrial regions are densely distributed.
Mostrar más [+] Menos [-]Cadmium distribution in mature durum wheat grains using dissection, laser ablation-ICP-MS and synchrotron techniques
2020
Yan, Bofang | Isaure, Marie-Pierre | Mounicou, Sandra | Castillo-Michel, Hiram | De Nolf, Wout | Nguyen, Christophe | Cornu, Jean-Yves
Understanding how essential and toxic elements are distributed in cereal grains is a key to improving the nutritional quality of cereal-based products. The main objective of this work was to characterize the distribution of Cd and of nutrients (notably Cu, Fe, Mn, P, S and Zn) in the durum wheat grain. Laser ablation inductively coupled mass spectrometry and synchrotron micro X-ray fluorescence were used for micro-scale mapping of Cd and nutrients. A dissection approach was used to quantitatively assess the distribution of Cd and nutrients among grain tissues. Micro X-ray absorption near-edge spectroscopy was used to identify the Cd chemical environment in the crease. Cadmium distribution was characterized by strong accumulation in the crease and by non-negligible dissemination in the endosperm. Inside the crease, Cd accumulated most in the pigment strand where it was mainly associated with sulfur ligands. High-resolution maps highlighted very specific accumulation areas of some nutrients in the germ, for instance Mo in the root cortex primordia and Cu in the scutellum. Cadmium loading into the grain appears to be highly restricted. In the grain, Cd co-localized with several nutrients, notably Mn and Zn, which challenges the idea of selectively removing Cd-enriched fractions by dedicated milling process.
Mostrar más [+] Menos [-]Estimation of anthropogenic heat emissions in China using Cubist with points-of-interest and multisource remote sensing data
2020
Chen, Qian | Yang, Xuchao | Ouyang, Zutao | Zhao, Naizhuo | Jiang, Qutu | Ye, Tingting | Qi, Jun | Yue, Wenze
Rapid urbanization and industrialization in China stimulated the great increase of energy consumption, which leads to drastic rise in the emission of anthropogenic waste heat. Anthropogenic heat emission (AHE) is a crucial component of urban energy budget and has direct implications for investigating urban climate and environment. However, reliable and accurate representation of AHE across China is still lacking. This study presented a new machine learning-based top–down approach to generate a gridded anthropogenic heat flux (AHF) benchmark dataset at 1 km spatial resolution for China in 2010. Cubist models were constructed by fusing points-of-interest (POI) data of varying categories and multisource remote sensing data to explore the nonlinear relationships between various geographic predictors and AHE from different heat sources. The strategy of developing specific models for different components and exploiting the complementary features of POIs and remote sensing data generated a more reasonable distribution of AHF. Results showed that the AHF values in urban centers of metropolises over China range from 60 to 190 W m⁻². The highest AHF values were observed in some heavy industrial zones with value up to 415 W m⁻². Compared with previous studies, the spatial distribution of AHF from different heating components was effectively distinguished, which highlights the potential of POI data in improving the precision of AHF mapping. The gridded AHF dataset can serve as input of urban numerical models and can help decision makers in targeting extreme heat sources and polluters in cities and making differentiated and tailored strategies for emission mitigation.
Mostrar más [+] Menos [-]