Refinar búsqueda
Resultados 521-530 de 741
Assessment of Water Quality Status for the Selangor River in Malaysia
2010
Fulazzaky, Mohamad Ali | Seong, Teng Wee | Masirin, Mohd Idrus Mohd
Water quality degradation in the Selangor River will still be present in the years to come since pollutant loads from poultry farms, municipal wastewaters, and industrial wastewaters are not envisaged to be handled effectively. This will be facing the problems of water quality status to use for multiple purposes and to provide its aquatic environment continuously. The water quality evaluation system is used to assess the water quality condition in the river. This system distinguishes two categories of water condition i.e., the water quality index and water quality aptitude. The assessment of water quality for the Selangor River from nine stations along the main stream, which concludes that water has been highly polluted (index 5) immediately downstream of station 02 Selangor River before confluence with Kubu River due to high concentration of microorganisms and immediately downstream of station 06 Selangor River before confluence with Batang Kali River due to high concentrations of microorganisms and suspended particles, was verified. Mineral micropollutants were found to gradually pollute the stream water, ranging from the unpolluted water (index 1) in the upstream to the bad quality (index 4) in the downstream area.
Mostrar más [+] Menos [-]Evaluation of Acid Leachable Trace Metals in Soils Around a Five Centuries Old Mining District in Hidalgo, Central Mexico
2010
Jonathan, M. P. | Jayaprakash, M. | Srinivasalu, S. | Roy, P. D. | Thangadurai, N. | Muthuraj, S. | Stephen-Pitchaimani, V.
We present the concentrations and distribution patterns of nine acid leachable trace metals (ALTMs) Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, and Cd in the soil samples from the five century old Pachuca-Mineral de Monte mining district of the Central Mexico. The ALTMs do not show any significant correlation with pH, EC, CaCO₃, and organic carbon. The metal concentration indicates three distinct distribution patterns. Fe, Mn, Cr, Pb, and Zn show enrichment in the high altitude region of the northern and central part of the study area. Likewise, Cu and Cd are enriched in the northern mountainous terrains. Both these groups show strong positive correlation with Mn indicating that they are associated with Mn-bearing minerals. However, we relate the first group of metals to excessive vehicular transportation and second group to mining waste dumps. The third group of ALTMs Co and Ni indicates its direct relationship to ore processing activities. Comparison of ALTMs concentrations from this study and various other studies throughout the world suggests the need to take precautionary measures of surface soil in high altitude areas to avoid metal enrichments and its subsequent environmental problems.
Mostrar más [+] Menos [-]Improvement of Arsenic Electro-Removal from Underground Water by Lowering the Interference of other Ions
2010
García-Lara, A. M. | Montero-Ocampo, C.
Electrocoagulation (EC) has been evaluated as a treatment technology for arsenic (As) removal. Experiments were developed in an electrochemical reactor with three parallel iron plates. Current densities of 15, 30, and 45 A m⁻² were used to treat model water and 45 A m⁻² to treat underground water (GW). For both types of water, the EC process was able to decrease the residual arsenic concentration to less than 10 μg L⁻¹. However, the treatment time for As removal from GW was higher. This phenomenon was attributed to the competition of dissolved species present in GW such as silica and calcium with arsenic for the adsorption sites on the ferric oxyhydroxides flocs generated during the EC process. A procedure is proposed to reduce such interference by the addition of a silica adsorption inhibitor compound into the GW achieving a reduction in the process time. The adsorption of arsenic species over adsorbent was found to follow Lagergren adsorption model.
Mostrar más [+] Menos [-]Stable Isotope Probing Identifies Novel m-Xylene Degraders in Soil Microcosms from Contaminated and Uncontaminated Sites
2010
Xie, Shuguang | Sun, Weimin | Luo, Chunling | Cupples, Alison M.
The remediation of groundwater contaminated with benzene, toluene, ethylbenzene, and the xylenes (BTEX) typically involves in situ biodegradation. Although the mechanisms of aerobic BTEX biodegradation in laboratory cultures have been well studied, less is known about the microorganisms responsible in mixed culture samples or at contaminated sites. In this study, the microorganisms responsible for in situ degradation within mixed culture samples were investigated using the molecular method stable isotope probing (SIP). For this, m-xylene was utilized as a model BTEX contaminant. Specifically, DNA-based SIP was utilized to identify active m-xylene degraders in microcosms constructed with soil from three sources (a gasoline-contaminated site and two agricultural sites). Replicate microcosms were amended with either labeled (¹³C) or unlabeled m-xylene, and the extracted DNA samples were ultracentrifuged, fractioned, and subjected to terminal restriction fragment length polymorphism (TRFLP). The dominant m-xylene degraders (responsible for ¹³C uptake) were determined by comparing relative abundance of TRFLP phylotypes in heavy fractions of labeled m-xylene (¹³C) amended samples to the controls (from unlabeled m-xylene amended samples). Four phylotypes were identified as the dominant m-xylene degrading species, falling within either the β Proteobacteria or the Bacilli. Of these, two 16S rRNA gene sequences were highly novel, displaying very limited similarity (94% and 90%) to any previously reported 16S rRNA gene sequence. Further, three of these phylotypes fell within genera with limited or no previous links to BTEX degradation, suggesting much information is still to be gained concerning the identity of microorganisms responsible for degradation within mixed culture samples.
Mostrar más [+] Menos [-]Impacts of Metal Contamination in Calcareous Waters of Deûle River (France): Water Quality and Thermodynamic Studies on Metallic Mobility
2010
Lourino-Cabana, B. | Lesven, L. | Billon, G. | Proix, N. | Recourt, P. | Ouddane, B. | Fischer, J. C. | Boughriet, A.
To evaluate adverse impacts of metal pollution originating from smelting activities on the aquatic ecosystem of Deûle river in northern France, water samples were collected from five selected stations along a contaminated region of this river (during two surveys: April-June 2005 and April-May 2007). All samples were analysed using inductively coupled plasma (ICP) atomic emission spectroscopy and/or ICP-mass spectrometry. Both the concentrations of dissolved and particulate elements were determined, and analytical data were compared with national and international water/particle quality guidelines as well as with some values reported in the literature for polluted rivers. For all the metals studied (i.e. Cd, Cr, Cu, Mn, Ni, Pb and Zn), our investigations showed that the effects of the dissolved phase on this aquatic medium were weak, according to water quality status established by US Environmental Protection Agency, USEPA (1994, 1999). Conversely, the levels of metals in suspended particulate matter were found to be much higher than local background contents and natural reference levels in French catchments. These levels were further quantified as “serious” contamination, i.e. above the “red” range that was previously elaborated by most existing metal-contamination scales in French basins of similar geology. The affinity of these metals for the particulate phase in Deûle waters follows the order: Cd >Cr > Pb > Zn = Mn > Cu > Ni. The trace metals released from anthropogenic activities were found to be partly bound to the reactive particulate phase, calcite, which is sensitive to physico-chemical variations occurring in the river ecosystem. To appraise the risk of ecotoxicity by metals, predictions on the ability to release metallic pollutants from calcite into waters were made successfully by testing three equilibrium geochemical speciation models (JCHESS, VISUAL MINTEQ and WINHUMIC) in which soluble organic matter was taken into account. Calculations showed that metal-water-calcite systems in Deûle River are close to thermodynamic equilibrium with generation of solid solutions, MeαCa₁₋αCO₃, by (co)precipitation and/or adsorption reactions. On the basis of results mentioned here, more measurements of river chemistry and assessments of predictive capabilities of chosen water-quality guidelines with time would be developed in aquatic and calcareous areas for controlled dredging operations or other treatment engineering works.
Mostrar más [+] Menos [-]Adsorption of Natural Estrogens and Their Conjugates by Activated Sludge
2010
Chen, Xia | Hu, Jiangyong
Adsorption to biomass is a key mechanism which results in the elimination of natural estrogens and their conjugates from sewage. Freundlich model showed that the adsorption capacities of estrone and 17β-estradiol to activated sludge were the highest at neutral pH. The lower capacities at pH 2 and 11.5 could be due to the competition of sludge adsorption sites by cations or electrostatic repulsion from particles of similar charges. The lowest adsorption capacity at pH 11.5 was attributable to electrostatic repulsion, and the highest capacity at pH 2 might be due to the increased sulfate adsorbability. For estrogen conjugates such as estrone-3-sulfate and 17β-estradiol-3-sulfate, adsorption performances were similar at pH 5, 7, and 9. It was observed that mean values of log K D were 2.78, 2.61, 1.67, and 1.94 l kg TSS⁻¹; log K OM were 2.96, 2.79, 1.77, and 2.04 l kg VSS⁻¹ and those of log K OC were 3.31, 3.12, 2.21, and 2.46 l kg OC⁻¹ for estrone, 17β-estradiol, estrone-3-sulfate, and 17β-estradiol-3-sulfate, respectively.
Mostrar más [+] Menos [-]Comparison Degradation of Pentachlorophenol Using Microwave-Induced Nanoscale Fe⁰ and Activated Carbon
2010
Lee, Hsien-Yi | Lee, Chien-Li | Jou, Chih-Ju G.
Microwave (MW) is applied to enhance pentachlorophenol (PCP) removal using zerovalent iron (ZVI, Fe⁰) or granular activated carbon (GAC) as the dielectric media. Applying MW energy at 700 W for 20 s, the results show that Fe⁰ is capable of enhancing the CB removing 2.7 times (91% vs. 34 %) than GAC. Because Fe⁰ has higher dielectric loss (39.5 F/m vs. 8.3 F/m), it absorbs more MW energy to speed up the oxidation rate resulting in a faster temperature rise than GAC. Thus, in the presence of MW, Fe⁰ is superior to GAC for PCP removal. Additionally, excessive MW exposure will damage the surface structure of either Fe⁰ or GAC causing excessive electric charges to accumulate in the media that brings about the phenomenon of sparks.
Mostrar más [+] Menos [-]Electrochemical Production of Ferrate (Iron VI): Application to the Wastewater Treatment on a Laboratory Scale and Comparison with Iron (III) Coagulant
2010
Stanford, Cécile | Jiang, Jia-Qian | Alsheyab, Mohammad
This paper presents a comparative study of the performance of ferrate(VI), FeO ₄ ²⁻ , and ferric, Fe(III), towards wastewater treatment. The ferrate(VI) was produced by electrochemical synthesis, using steel electrodes in a 16 M NaOH solution. Domestic wastewater collected from Hailsham North Wastewater Treatment Works was treated with ferrate(VI) and ferric sulphate (Fe(III)). Samples were analysed for suspended solids, chemical oxygen demand (COD), biochemical oxygen demand (BOD) and P removal. Results for low doses of Fe(VI) were validated via a reproducibility study. Removal of phosphorous reached 40% with a Fe(VI) dose as low as 0.01 mg/L compared to 25% removal with 10 mg/L of Fe(III). For lower doses (<1 mg/L as Fe), Fe(VI) can achieve between 60% and 80% removals of SS and COD, but Fe(III) performed even not as well as the control sample where no iron chemical was dosed. The ferrate solution was found to be stable for a maximum of 50 min, beyond which Fe(VI) is reduced to less oxidant species. This provided the maximum allowed storage time of the electrochemically produced ferrate(VI) solution. Results demonstrated that low addition of ferrate(VI) leads to good removal of P, BOD, COD and suspended solids from wastewater compared to ferric addition and further studies could bring an optimisation of the dosage and treatment.
Mostrar más [+] Menos [-]Copper Biosorption by Biomass of Marine Alga: Study of Equilibrium and Kinetics in Batch System and Adsorption/Desorption Cycles in Fixed Bed Column
2010
Fagundes-Klen, Márcia Regina | Veit, Márcia Teresinha | Borba, Carlos Eduardo | Bergamasco, Rosângela | de Lima Vaz, Luiz Gustavo | da Silva, Edson Antonio
Copper biosorption onto chemically modified biomass of marine alga Sargassum filipendula was investigated in a batch reactor and a fixed bed column. Experiments were carried out in the batch reactor to obtain kinetic and equilibrium data and to assess the copper desorption efficiency of different eluent solutions. The pseudo-first-order, pseudo-second-order, and Langmuir kinetic models were used to correlate kinetic data. The experimental data fitted well to the pseudo first order and Langmuir kinetic models. Langmuir and Freundlich models were applied to describe the equilibrium data obtained at a fixed temperature of 30°C and at pH values of 3.0, 4.0, 5.0, and 6.0. The maximum capacities of copper biosorption onto the algal biomass were 1.43, 1.59, 2.40, and 2.36 mequiv./g at pH 3.0, 4.0, 5.0, and 6.0, respectively. The efficiencies of two eluent solutions (calcium chloride and hydrochloric acid) for copper removal from the biomass were evaluated at different concentrations (0.1, 0.2, 0.5, and 1.0 mol/L). The efficiencies of the calcium chloride solutions varied from 1% to 14%, while efficiencies varying from 95% to 99% were obtained when hydrochloric acid solutions were applied. Three adsorption/desorption cycles were carried out in a fixed bed column using 0.1 mol/L hydrochloric acid as eluent solution. The results showed that an increase in the number of cycles led to a reduction in the adsorption capacity of the alga. The desorbed copper fraction presented no significant variation, remaining around 63% in the three adsorption/desorption cycles.
Mostrar más [+] Menos [-]Tetracycline-Resistant Escherichia coli in a Small Stream Receiving Fish Hatchery Effluent
2010
Stachowiak, Matthew | Clark, Shirely E. | Templin, Rebekah E. | Baker, Katherine H.
We examined the impact of the effluent discharged from a freshwater (trout and related species) fish hatchery on the presence of antibiotic-resistant microorganisms in a small stream. There had been no documented use of antibiotics in the hatchery for at least 6 months prior to our study, although a variety of biocides were employed routinely for cleaning. Heterotrophic bacteria and Escherichia coli were isolated from both water column and sediment samples at sites above and below the discharge of the hatchery effluent as well as from the hatchery effluent itself. Randomly chosen isolates (≥96 isolates per site) were tested for their resistance to ampicillin, cephalexin, erythromycin, and tetracycline. Resistance to at least one antibiotic was found in greater than 30% of both the heterotrophic isolates and the E. coli isolates from each of the sites. There were no significant differences among the sites in the proportion of the heterotrophic isolates resistant to any specific antibiotic. The proportion of E. coli isolates resistant to tetracycline in the hatchery effluent and in both the downstream water and sediment samples was significantly higher than in either the upstream water or sediment. These results support the possibility of the hatchery as a source of tetracycline-resistant microorganisms even in the absence of recent use of this antibiotic.
Mostrar más [+] Menos [-]