Refinar búsqueda
Resultados 521-530 de 4,937
The impact of household air cleaners on the chemical composition and children's exposure to PM2.5 metal sources in suburban Shanghai Texto completo
2019
Brehmer, Collin | Norris, Christina | Barkjohn, Karoline K. | Bergin, Mike H. | Zhang, Junfeng | Cui, Xiaoxing | Zhang, Yinping | Black, Marilyn | Li, Zhen | Shafer, Martin | Schauer, James J.
Increased public awareness of the health impacts of atmospheric fine particulate matter (PM₂.₅) has led to increased demand and deployment of indoor air cleaners. Yet, questions still remain about the effectiveness of indoor air cleaners on indoor PM₂.₅ concentrations and personal exposure to potentially hazardous components of PM₂.₅. Metals in PM₂.₅ have been associated with adverse health outcomes, so knowledge of their sources in urban indoor and outdoor areas and how exposures are influenced by indoor air cleaners would be beneficial for public health interventions. We collected 48-h indoor, outdoor, and personal PM₂.₅ exposure samples for 43 homes with asthmatic children in suburban Shanghai, China during the spring months. Two sets of samples were collected for each household, one set with a functioning air filter placed in the bedroom (“true filtration”) and the other with a non-functioning (“sham”) air cleaner. PM₂.₅ samples were analyzed for elements, elemental carbon, and organic carbon. The major sources of metals in PM₂.₅ were determined by Positive Matrix Factorization (PMF) to be regional aerosol, resuspended dust, residual oil combustion, roadway emissions, alloy steel abrasion, and a lanthanum (La) and cerium (Ce) source. Under true filtration, the median indoor to outdoor percent removal across all elements increased from 31% to 78% and from 46% to 88% across all sources. Our findings suggest that indoor air cleaners are an effective strategy for reducing indoor concentrations of PM₂.₅ metals from most sources, which could translate into improved health outcomes for some populations.
Mostrar más [+] Menos [-]Rare earth elements in the Pearl River Delta of China: Potential impacts of the REE industry on water, suspended particles and oysters Texto completo
2019
Ma, Lan | Đức Huy, | Wang, Wei | Evans, R Douglas | Wang, Wen-Xiong
Rare earth element (REE) concentrations and patterns were measured in surface water, suspended particles (SP) and oysters from the Pearl River Estuary, China. During the rainy season of 2017, higher REE concentrations were found at the stations in the estuary (ΣREE = 0.06–0.42 μg L⁻¹) than those at the river mouths (referred to as ‘outlet’ stations, ΣREE = 0.001–0.14 μg L⁻¹). However, the reverse occurred in the dry season of 2016 (ΣREE = 0.07–0.16 μg L⁻¹ in the mid-estuary vs. 0.001–0.02 μg L⁻¹in the outlet stations). Elevated concentrations of Pr, Nd, Dy and Ho, relative to the other REEs were found in water in both seasons at most sampling locations. However, in some estuary stations, no anomalies were detected in the SP or in the oysters while some anomalies were seen in SP from the outlet stations. Significant correlations between REE concentrations in SP and oysters as well as between both total REE concentrations and the La/Yb ratio (reflecting enhanced accumulation of light REEs (LREEs)) in oysters indicate that, in the Pearl River Estuary, the dominant REE uptake pathway in oysters is from particles.The elevated concentrations of Pr, Nd, Dy and Ho, which are reported here for the first time suggest that elevated levels of these elements may result from REE recycling and other industrialized activities in this area of southern China. Specific REEs could be used to indicate emerging contamination by the modern REE industry; furthermore, REE anomalies and patterns may be suitable tools to track REE sources.
Mostrar más [+] Menos [-]Toxic effects of bisphenol A diglycidyl ether and derivatives in human placental cells Texto completo
2019
Marqueño, Anna | Pérez-Albaladejo, Elisabet | Flores, Cintia | Moyano, Encarnación | Porte, Cinta
Toxic effects of bisphenol A diglycidyl ether and derivatives in human placental cells Texto completo
2019
Marqueño, Anna | Pérez-Albaladejo, Elisabet | Flores, Cintia | Moyano, Encarnación | Porte, Cinta
BADGE (bisphenol A diglycidyl ether) is a synthesis product of bisphenol A (BPA), which, like other plasticizers, can cross the human placenta and reach the foetus. However, compared to BPA, there is almost no toxicological information. This work investigates the toxicity, endocrine and lipid disruption potential of BADGE and its hydrolysed and chlorinated derivatives (BADGE·H₂O and BADGE·2HCl) in human placental JEG-3 cells. The analysis of culture medium by HPLC-ESI(+)-QqQ evidenced a good bioavailability of BADGE·2HCl and BADGE·H₂O, but low stability of BADGE. Regardless, BADGE·2HCl and BADGE showed higher cytotoxicity than BADGE·H₂O, which was the only compound that significantly inhibited CYP19 activity (IC₅₀ 49 ± 5 μM). JEG-3 cells lipidome analyzed by FIA-ESI(+/−)-Orbitrap was significantly altered by exposure to BADGE·2HCl and BADGE at concentrations at the low μM range. BADGE·2HCl lead to a strong decrease of diacyl- and triacyl-glycerides (DGs,TGs) together with some membrane lipids, while BADGE lead to an accumulation of TGs. The results evidence the ability of BADGE and derivatives to affect placental lipid handling and to modulate placental CYP19 activity (BADGE·H₂O) and highlights the need to monitor human exposure to these compounds, at least as intensely as BPA is monitored.
Mostrar más [+] Menos [-]Toxic effects of bisphenol A diglycidyl ether and derivatives in human placental cells Texto completo
2019
Marqueño, Anna | Pérez-Albaladejo, Elisabet | Flores, Cintia | Moyano, Encarnación | Porte Visa, Cinta | Pérez-Albaladejo, Elisabet [0000-0002-1319-9552] | Flores, Cintia [0000-0002-7766-5639] | Porte, Cinta [0000-0002-3940-6409]
BADGE (bisphenol A diglycidyl ether) is a synthesis product of bisphenol A (BPA), which, like other plasticizers, can cross the human placenta and reach the foetus. However, compared to BPA, there is almost no toxicological information. This work investigates the toxicity, endocrine and lipid disruption potential of BADGE and its hydrolysed and chlorinated derivatives (BADGE·H2O and BADGE·2HCl) in human placental JEG-3 cells. The analysis of culture medium by HPLC-ESI(+)-QqQ evidenced a good bioavailability of BADGE·2HCl and BADGE·H2O, but low stability of BADGE. Regardless, BADGE·2HCl and BADGE showed higher cytotoxicity than BADGE·H2O, which was the only compound that significantly inhibited CYP19 activity (IC50 49 ± 5 μM). JEG-3 cells lipidome analyzed by FIA-ESI(+/−)-Orbitrap was significantly altered by exposure to BADGE·2HCl and BADGE at concentrations at the low μM range. BADGE·2HCl lead to a strong decrease of diacyl- and triacyl-glycerides (DGs,TGs) together with some membrane lipids, while BADGE lead to an accumulation of TGs. The results evidence the ability of BADGE and derivatives to affect placental lipid handling and to modulate placental CYP19 activity (BADGE·H2O) and highlights the need to monitor human exposure to these compounds, at least as intensely as BPA is monitored. Bisphenol A diglycidyl ether and derivatives disrupt placenta cell lipidome and show comparatively higher toxicity than bisphenol A. © 2018 Elsevier Ltd | Anna Marqueño acknowledges a pre-doctoral fellowship BES-2015-074842. Work financed by Ministerio de Ciencia e Innovación , under the project ref. CGL2014-52144-P. Appendix A | Peer reviewed
Mostrar más [+] Menos [-]Exposure to Aroclor 1254 persistently suppresses the functions of pancreatic β-cells and deteriorates glucose homeostasis in male mice Texto completo
2019
Xi, Zhihui | Fang, Lu | Xu, Jing | Li, Bingshui | Zuo, Zhenghong | Lv, Liangju | Wang, Chonggang
Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants that have been shown to be related to the occurrence of type 2 diabetes mellitus (T2DM). Nevertheless, it is necessary to further explore the development of T2DM caused by PCBs and its underlying mechanisms. In the present study, 21-day-old C57BL/6 male mice were orally treated with Aroclor 1254 (0.5, 5, 50 or 500 μg kg−1) once every three days. After exposure for 66 d, the mice showed impaired glucose tolerance, 13% and 14% increased fasting serum insulin levels (FSIL), and 63% and 69% increases of the pancreatic β-cell mass in the 50 and 500 μg kg−1 groups, respectively. After stopping exposure for 90 d, treated mice returned to normoglycemia and normal FSIL. After re-exposure of these recovered mice to Aroclor 1254 for 30 d, fasting plasma glucose showed 15%, 28% and 16% increase in the 5, 50 and 500 μg kg−1 treatments, FSIL exhibited 35%, 27%, 30% and 32% decrease in the 0.5, 5, 50 or 500 μg kg−1 groups respectively, and there was no change in pancreatic β-cell mass. Transcription of the pancreatic insulin gene (Ins2) was significantly down-regulated in the 50 and 500 μg kg−1 groups, while DNA-methylation levels were simultaneously increased in the Ins2 promoter during the course of exposure, recovery and re-exposure. Reduced insulin levels were initially rescued by a compensative increase in β-cell mass. However, β-cell mass eventually failed to make sufficient levels of insulin, resulting in significant increases in fasting blood glucose, and indicating the development of T2DM.
Mostrar más [+] Menos [-]Widespread occurrence and spatial distribution of glyphosate, atrazine, and neonicotinoids pesticides in the St. Lawrence and tributary rivers Texto completo
2019
Montiel-León, Juan Manuel | Muñoz, Gabriel | Vo Duy, Sung | Do, Dat Tien | Vaudreuil, Marc-Antoine | Goeury, Ken | Guillemette, François | Amyot, Marc | Sauvé, Sébastien
The occurrence and spatial distribution of selected pesticides were investigated along a 200-km reach of the St. Lawrence River (SLR) and tributaries in Quebec, Canada. Surface water samples (n = 68) were collected in the summer 2017 and analyzed for glyphosate, atrazine (ATZ), 8 systemic insecticides (acetamiprid, clothianidin, dinotefuran, fipronil, imidacloprid, nitenpyram, thiacloprid, and thiamethoxam) and some metabolites. Overall, 99% of the surface water samples were positive to at least one of the targeted pesticides. The most recurrent compounds were glyphosate (detection frequency: 84%), ATZ (82%), thiamethoxam (59%), desethylatrazine (DEA: 47%), and clothianidin (46%). Glyphosate displayed variable levels (4–3,000 ng L−1), with higher concentrations in south tributaries (e.g., Nicolet and Yamaska). In positive samples, the sum of ATZ and DEA varied between 5 and 860 ng L−1, and the sum of 6 priority neonicotinoids between 1.5 and 115 ng L−1. From Repentigny to the Sorel Islands, the spatial distribution of pesticides within the St. Lawrence River was governed by the different upstream sources (i.e., Great Lakes vs. Ottawa River) due to the limited mixing of the different water masses. Cross-sectional patterns revealed higher concentrations of glyphosate and neonicotinoids in the north portions of transects, while the middle and south portions showed higher levels of atrazine. In Lake St. Pierre and further downstream, cross-sections revealed higher levels of the targeted pesticides near the southern portions of the SLR. This may be due to the higher contributions from south shore tributaries impacted by major agricultural areas, compared to north shore tributaries with forest land and less cropland use. Surface water samples were compliant with guidelines for the protection of aquatic life (chronic effects) for glyphosate and atrazine. However, 31% of the samples were found to surpass the guideline value of 8.3 ng L−1 for the sum of six priority neonicotinoids.
Mostrar más [+] Menos [-]Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil Texto completo
2019
Wang, Jie | Coffin, Scott | Sun, Chengliang | Schlenk, Daniel | Gan, Jay
As one type of the most widespread and long-lasting anthropogenic contaminants, microplastics have become a global environmental concern. While numerous studies have demonstrated effects of microplastics on aquatic organisms, the potential influence on terrestrial faunas is relatively less known, even though soil is a primary recipient and sink of plastics. In this study, earthworm Eisenia fetida was exposed to different levels (0, 1, 5, 10, and 20% d.w.) of polyethylene (PE, ≤300 μm) and polystyrene (PS, ≤250 μm) particles in an agricultural soil to evaluate the oxidative stress. Fluorescence imaging, after dying with Nile Red, clearly indicated the ingestion of PE and PS particles by E. fetida. Exposure to PE or PS particles at the highest rate (20%) for 14 d significantly (p < 0.05) increased the activity of catalase and peroxidase and the level of lipid peroxidation, while inhibited the activity of superoxide dismutase and glutathione S-transferase in E. fetida. However, no discernible effect was detected at amendment rates ≤10% for the majority of biochemical endpoints, suggesting that microplastic-induced oxidative stress would not occur in E. fetida under most environmental conditions. The influence of microplastics on bioaccumulation of PAHs and PCBs was also evaluated in E. fetida exposed to different levels (0, 0.1, 1, 5, and 10% d.w.) of PE and PS particles. The tissue concentrations of PAHs and PCBs were reduced in the presence of microplastics at amendment rates ≥1%, suggesting that microplastics did not act as a carrier to enhance contaminant uptake. This was attributed to competitive sorption of microplastics for contaminants and the specific feeding behavior of earthworm. Biodynamic model analysis confirmed that ingestion of microplastics contributed negligibly to contaminant bioaccumulation. Findings of this study suggested that under environmentally relevant conditions, microplastics should not cause significant toxic effects to E. fetida, nor enhance its accumulation of hydrophobic contaminants.
Mostrar más [+] Menos [-]Towards an understanding of the Cd isotope fractionation during transfer from the soil to the cereal grain Texto completo
2019
Imseng, Martin | Wiggenhauser, Matthias | Keller, Armin | Müller, Michael | Rehkämper, Mark | Murphy, Katy | Kreissig, Katharina | Frossard, Emmanuel | Wilcke, Wolfgang | Bigalke, Moritz
Cd in soils might be taken up by plants, enter the food chain and endanger human health. This study investigates the isotopic fractionation of major processes during the Cd transfer from soils to cereal grains. Thereto, soil, soil solution, wheat and barley plants (roots, straw and grains) were sampled in the field at three study sites during two vegetation periods. Cd concentrations and δ¹¹⁴/¹¹⁰Cd values were determined in all samples. The composition of the soil solution was analyzed and the speciation of the dissolved Cd was modelled. Isotopic fractionation between soils and soil solutions (Δ¹¹⁴/¹¹⁰Cd₂₀₋₅₀cₘ₋ₛₒᵢₗ ₛₒₗᵤₜᵢₒₙ = −0.61 to −0.68‰) was nearly constant among the three soils. Cd isotope compositions in plants were heavier than in soils (Δ¹¹⁴/¹¹⁰Cd₀₋₂₀cₘ₋ₚₗₐₙₜₛ = −0.55 to −0.31‰) but lighter than in soil solutions (Δ¹¹⁴/¹¹⁰Cdₛₒᵢₗ ₛₒₗᵤₜᵢₒₙ₋ₚₗₐₙₜₛ = 0.06–0.36‰) and these differences correlated with Cd plant-uptake rates. In a conceptual model, desorption from soil, soil solution speciation, adsorption on root surfaces, diffusion, and plant uptake were identified as the responsible processes for the Cd isotope fractionation between soil, soil solution and plants whereas the first two processes dominated over the last three processes. Within plants, compartments with lower Cd concentrations were enriched in light isotopes which might be a consequence of Cd retention mechanisms, following a Rayleigh fractionation, in which barley cultivars were more efficient than wheat cultivars.
Mostrar más [+] Menos [-]Size distribution of particulate matter in runoff from different leaf surfaces during controlled rainfall processes Texto completo
2019
Xu, Xiaowu | Yu, Xinxiao | Bao, Le | Desai, Ankur R.
The presence of plant leaves has been shown to lower the risks of health problems by reducing atmospheric particulate matter (PM). Leaf PM accumulation capacity will saturate in the absence of runoff. Rainfall is an effective way for PM to “wash off” into the soil and renew leaf PM accumulation. However, little is known about how PM wash-off varies with PM size and health problems caused by particulate pollution vary with PM size. This study thus used artificial rainfall with six plant species to find out how size-fractioned PM are washed off during rain processes. Total wash-off masses in fine, coarse and large fractions were 0.6–10.3 μg/cm2, 1.0–18.8 μg/cm2 and 4.5–60.1 μg/cm2 respectively. P. orientalis (cypress) and E. japonicus (evergreen broadleaved shrub) had the largest wash-off masses in each fraction during rainfall. P. cerasifera (deciduous broadleaved shrub) had the largest cumulative wash-off rates in each fraction. Rainfall intensity had more influence on wash-off masses and rates of large particles for six species and for small particles in evergreen species, but limited effect on wash-off proportions. Wash-off proportions decreased in large particles and increased in small particles along with rainfall. The results provide information for PM accumulation renewal of plants used for urban greening.
Mostrar más [+] Menos [-]Simulated digestion of polystyrene foam enhances desorption of diethylhexyl phthalate (DEHP) and In vitro estrogenic activity in a size-dependent manner Texto completo
2019
Coffin, Scott | Lee, Ilkeun | Gan, Jay | Schlenk, Daniel
Marine polychaetes and fish are known to ingest polystyrene microparticles in the environment. Laboratory microplastic feeding experiments have demonstrated that plastic may release endocrine-disrupting compounds such as diethylhexyl phthalate (DEHP), which can cause adverse effects in both vertebrates and invertebrates. In order to determine the influence of size and digestive conditions on the desorption of DEHP and other plasticizers to polychaetes and fish, we exposed polystyrene particles of various sizes under invertebrate and vertebrate digestive conditions (vertebrate mimic; pepsin, pH = 2.0, 24 °C, invertebrate mimic; Na taurocholate pH = 7, 18 °C). Estrogen receptor activation and concentrations of 12 plasticizers were measured in the extracts. DEHP, bisphenol S and 4-tert-octylphenol were the only compounds detected. Simulated vertebrate gut digestion did not significantly enhance the release of chemicals nor estrogenic activity. However, a 6.3 ± 2.0-fold increase in the concentration of DEHP was observed in extracts from invertebrate gut conditions (Mean ± SD; N = 24, p < 0.0001). Additionally, estimated particle surface area was positively correlated with estrogenic activity across all treatment types (r = 0.85, p < 0.0001). Overall, these data indicate an elevated bioaccessibility of DEHP may occur in invertebrates, and size-dependent desorption of uncharacterized estrogenic compounds from plastic suggest additional complexity when considering the risks of MP to aquatic organisms.
Mostrar más [+] Menos [-]Spatial and temporal variation of antibiotic resistance in marine fish cage-culture area of Guangdong, China Texto completo
2019
Wu, Jinjun | Su, Youlu | Deng, Yiqin | Guo, Zhixun | Cheng, Changhong | Ma, Hongling | Liu, Guangfeng | Xu, Liwen | Feng, Juan
The rapid emergence and dissemination of antibiotic resistance poses a threat to human health and to the marine environment. We have investigated the abundance and diversity of antibiotic resistance genes (ARGs) and of antibiotic-resistant bacteria (ARB), during the seedling period, rearing period, and harvesting period in seven marine fish cage-culture areas in Guangdong. Spatial and temporal variations of AGRs and ARB were also analyzed. Culture-based methods and quantitative PCR were used to detect ARB and ARGs. Bacterial resistance rates were no significantly different within farming periods. The proportion of antibiotic-resistant bacteria was extremely low (average on 1.15%), except for oxytetracycline-resistant bacteria (average on 34.15%). Vibrio was the most common ARB. Sul1, tetB, and ermB, had the highest relative abundance. The abundance of ARGs in the harvesting period was significant highest. The total abundance of ARGs was highest at Raoping and lowest at Dayawan and Liusha. Most ARGs were associated with opportunistic pathogens. The environmental factors effecting ARB and ARGs are complex, and no key factors were identified. This study provides a theoretical basis for assessing the harmfulness of ARGs and ARB to food safety and human health.
Mostrar más [+] Menos [-]