Refinar búsqueda
Resultados 521-530 de 7,975
An empirical model to estimate ammonia emission from cropland fertilization in China
2021
Wang, Chen | Cheng, Kun | Ren, Chenchen | Liu, Hongbin | Sun, Jianfei | Reis, Stefan | Yin, Shasha | Xu, Jianming | Gu, Baojing
Ammonia (NH₃) volatilization is one of the main pathways of nitrogen loss from cropland, resulting not only in economic losses, but also environmental and human health impacts. The magnitude and timing of NH₃ emissions from cropland fertilizer application highly depends on agricultural practices, climate and soil factors, which previous studies have typically only considered at coarse spatio-temporal resolution. In this paper, we describe a first highly detailed empirical regression model for ammonia (ERMA) emissions based on 1443 field observations across China. This model is applied at county level by integrating data with unprecedented high spatio-temporal resolution of agricultural practices and climate and soil factors. Results showed that total NH₃ emissions from cropland fertilizer application amount to 4.3 Tg NH₃ yr⁻¹ in 2017 with an overall NH₃ emission factor of 12%. Agricultural production for vegetables, maize and rice are the three largest emitters. Compared to previous studies, more emission hotspots were found in South China and temporally, emission peaks are estimated to occur three months earlier in the year, while the total amount of emissions is estimated to be close to that calculated by previous studies. A second emission peak is identified in October, most likely related to the fertilization of the second crop in autumn. Incorporating these new findings on NH₃ emission patterns will enable a better parametrization of models and hence improve the modelling of air quality and subsequent impacts on ecosystems through reactive N deposition.
Mostrar más [+] Menos [-]Primary organic gas emissions from gasoline vehicles in China: Factors, composition and trends
2021
Qi, Lijuan | Zhao, Junchao | Li, Qiwei | Su, Sheng | Lai, Yitu | Deng, Fanyuan | Man, Hanyang | Wang, Xiaotong | Shen, Xiu'e | Lin, Yongming | Ding, Yan | Liu, Huan
Continuous tightening emission standards (ESs) facilitate the reduction of organic gas emissions from gasoline vehicles. Correspondingly, it is essential to update the emissions and chemical speciation of total organic gases (TOGs), including volatile organic compounds (VOCs), intermediate volatility organic compounds (IVOCs), CH₄, and unidentified non-methane hydrocarbons (NMHCs) for assessing the formation of ozone and secondary organic aerosol (SOA). In this study, TOG and speciation emissions from 12 in-use light-duty gasoline vehicle (LDGV) exhausts, covering the ESs from China II to China V, were investigated on a chassis dynamometer under the Worldwide Harmonized Light-duty Test Cycle (WLTC) in China. The results showed that the most effectively controlled subgroup in TOG emissions from LDGVs was VOCs, followed by the unidentified NMHCs and IVOCs. The mass fraction of VOCs in TOGs also reduced from 61 ± 9% to 46 ± 18% while the IVOCs gently increased from 2 ± 0.4% to 8 ± 4% along with the more stringent ESs. For the VOC subsets, the removal efficiency of oxygenated VOCs (OVOCs) was lower than those of other VOC subsets in the ESs from China IV to V, suggesting the importance of OVOC emission controls for relatively new LDGVs. The IVOC emissions were mainly subject to the ESs, then driving cycles and fuel use. The formation potentials of ozone and SOA from LDGVs decreased separately 96% and 90% along with the restricted ESs from China II-III to China IV. The major contributor of SOA formation transformed from aromatics in the VOC subsets for China II-III vehicles to IVOCs for China IV/V vehicles, highlighting that IVOC emissions from LDGVs are also needed more attentions to control in future.
Mostrar más [+] Menos [-]Fugitive emissions of polycyclic aromatic compounds from an oil sands tailings pond based on fugacity and inverse dispersion flux calculations
2021
Moradi, Maryam | You, Yuan | Hung, Hayley | Li, James | Park, Richard | Alexandrou, Nick | Moussa, Samar G. | Jantunen, Liisa | Robitaille, Rachelle | Staebler, Ralf
Alberta’s oil sands tailings ponds are suspected to be a source of fugitive emissions of polycyclic aromatic compounds (PACs) to the atmosphere. Here we report, for the first time, fluxes of 6 parent and 21 alkylated PACs based on the measured co-located air and water concentrations using a two-film fugacity-based model (FUG), an inverse dispersion model (DISP) and a simple box model (BOX). Air samples were collected at the Suncor Tailings Pond 2/3 using a high volume air sampler from the “pond” and towards the pond (“non-pond”) directions separately. Mean ∑₂₇PACs in air from the “pond” direction was greater than the “non-pond” direction by a factor of 17. Water-air fugacity ratio of 20 PACs quantifiable in water indicated net volatilization from water. Dispersion and box model results also indicated upward fluxes of 22 PACs. Correlation between the estimated flux results of BOX and DISP model was statistically significant (r = 0.99 and p < 0.05), and correlation between FUG and DISP results ranged from 0.54 to 0.85. In this first-ever assessment of PAC fluxes from tailings pond, the three models confirmed volatilization fluxes of PACs indicating Suncor Tailings Pond 2/3 is a source of PAC emissions to the atmosphere. This study addressed a key data gap identified in the Joint Oil Sands Monitoring Emissions Inventory Compilation Report (Government of Alberta and Canada, 2016) which is the lack of consistent real-world tailings pond fugitive emission monitoring of organic chemicals. Our findings highlight the need for measurements from other tailings ponds to determine their overall contribution in releasing PACs to the atmosphere. This paper presents a practical method for estimating PAC emissions from other tailings ponds, which can provide a better understanding of these fugitive emissions, and thereby help to improve the overall characterization of emissions in the oil sands region.
Mostrar más [+] Menos [-]Durable super-hydrophobic PDMS@SiO2@WS2 sponge for efficient oil/water separation in complex marine environment
2021
Zhai, Guanzhong | Qi, Lixue | He, Wang | Dai, Jiajun | Xu, Yan | Zheng, Yanmei | Huang, Jiale | Sun, Daohua
The robust and eco-friendly super-hydrophobic sponge with remarkable performances has been potential adsorption material for the treatment of offshore oil spills. In this work, the durable PDMS@SiO₂@WS₂ sponge was fabricated via a green and facile one-step dipping method. The mixed tungsten disulfide (WS₂) microparticles and hydrophobic SiO₂ nanoparticles were immobilized on the sponge by non-toxic polydimethylsiloxane (PDMS) glue tier, which featured the hierarchical structure and extreme water repellency with the water contact angle of 158.8 ± 1.4°. The obtained PDMS@SiO₂@WS₂ sponge exhibits high oil adsorption capacity with 12–112 times of its own weight, and oil/water selectivity with separation efficiency over 99.85%. Notably, when subjected to the complex marine environment including high temperature, corrosive condition, insolation, and strong wind and waves, the modified sponge can maintain sable super-hydrophobicity with water contact angle over 150°. Moreover, it possesses superior mechanical stability for sustainable reusability and oil recovery. The sponge fabricated by non-toxic modifiers along with its sable super-hydrophobicity in complex marine environment makes it a potential material for practical applications.
Mostrar más [+] Menos [-]Effects of acute ambient pollution exposure on preterm prelabor rupture of membranes: A time-series analysis in Shanghai, China
2021
Li, Cheng | Xu, Jing-Jing | He, Yi-Chen | Chen, Lei | Dennis, Cindy-Lee | Huang, He-Feng | Wu, Yan-Ting
While the effects of ambient pollutants on adverse perinatal outcomes have been studied, most studies have focused on preterm birth, stillbirth, and low birthweight. Few studies have examined the effects of ambient pollutants on prelabor rupture of membranes (PROM). This study was designed to explore the acute effects of ambient pollutants on both term PROM (TPROM) and preterm PROM (PPROM). We enrolled pregnant women receiving antenatal care between October 2013 and December 2019 at the International Peace Maternity and Child Health Hospital (IPMCHH). The effects of ambient pollutants (including PM₂.₅, PM₁₀, SO₂, CO, NO₂, and 8-h O₃) on TPROM and PPROM were estimated using generalized additive models (GAMs). Exposure-response relationship curves were also evaluated using GAMs after adjustment for confounding factors. Potential lagged effects were examined using various lag models. The data of 100,200 pregnant women who delivered at IPMCHH were analyzed. The fitted spline curves for PPROM were similar to the temporal trends of PM₂.₅, PM₁₀, SO₂, CO and NO₂ but not O₃, while those for TPROM were different from the temporal trends of all six air pollutants. An increased risk of PPROM was associated with increased concentrations of PM₂.₅, PM₁₀, SO₂ and CO on lag days 2 and 3, while no association was found between PPROM and daily concentration of O₃. After adjustment for confounding factors, there was a shift in the exposure-response curves, indicating associations between PPROM and PM₂.₅, PM₁₀, SO₂, and CO on lag days 2–3. Interaction effects of PM₂.₅, PM₁₀, SO₂, and CO were also found to increase the risk of PPROM. In conclusion, acute exposures to six critical air pollutants were not associated with an increased risk of TPROM; however, PM₂.₅, PM₁₀, SO₂, and CO were found to interact, increasing the risk for PPROM on lag days 2 and 3.
Mostrar más [+] Menos [-]Characteristics and health risks of benzene series and halocarbons near a typical chemical industrial park
2021
Chen, Ruonan | Li, Tingzhen | Huang, Chengtao | Yu, Yunjiang | Zhou, Li | Hu, Guocheng | Yang, Fumo | Zhang, Liuyi
Health risks of typical benzene series and halocarbons (BSHs) in a densely populated area near a large-scale chemical industrial park were investigated. Ambient and indoor air and tap water samples were collected in summer and winter; and the concentration characteristics, sources, and exposure risks of typical BSH species, including five benzene series (benzene, toluene, ethylbenzene, o-xylene, m,p-xylene) and five halocarbons (dichloromethane, trichloromethane, trichloroethylene, tetrachloromethane, and tetrachloroethylene), were analysed. The total mean concentrations of BSHs were 53.32 μg m⁻³, 36.29 μg m⁻³, and 26.88 μg L⁻¹ in indoor air, ambient air, and tap water, respectively. Halocarbons dominated the total BSHs with concentrations relatively higher than those in many other industrial areas. Industrial solvent use, industrial processes, and vehicle exhaust emissions were the principal sources of BSHs in ambient air. The use of household products (e.g., detergents and pesticides) was the principal source of indoor BSHs. Inhalation is the primary human exposure route. Ingestion of drinking water was also an important exposure route but had less impact than inhalation. Lifetime non-cancer risks of individual and cumulative BSHs were below the threshold (HQ = 1), indicating no significant lifetime non-cancer risks in the study area. However, tetrachloromethane, benzene, trichloromethane, ethylbenzene, and trichloroethylene showed potential lifetime cancer risk. The cumulative lifetime cancer risks exceeded the tolerable benchmark (1 × 10⁻⁴), indicating a lifetime cancer risk of BSHs to residents near the chemical industry park. This study provides valuable information for the management of public health in chemical industrial parks.
Mostrar más [+] Menos [-]Environmental exposure to cadmium reduces the primary antibody-mediated response of wood mice (Apodemus sylvaticus) from differentially polluted locations in the Netherlands
2021
García-Mendoza, Diego | van den Berg, Hans J.H.J. | Brink, Nico W. van den
The Wood mouse (Apodemus sylvaticus) is a widespread mammalian species that acts as a reservoir host for multiple infections, including zoonotic diseases. Exposure to immunotoxins, like for instance trace metals, may reduce the ability of the host to mount proper responses to pathogens, potentially increasing the transmission and prevalence of infections. Antibody-mediated responses are crucial in preventing and limiting infections, and the quantification of the primary antibody response is considered a sensitive predictor of immunosuppression. The current study aims to investigate effects of cadmium exposure on the antibody-mediated responses of wood mice inhabiting polluted and non-polluted areas in the Netherlands. Wood mice were captured alive at different locations and immunized to sheep red blood cells (SRBC) to induce a primary antibody response. SRBC-specific antibody-producing cells, or plaque forming cells (PFC), were quantified and related to kidney cadmium levels. Differential circulating main leukocyte populations were also characterised. Cadmium concentrations in mice kidneys differed between mice captured at different locations, and increased with individual body mass, likely associated with age-related time of exposure. Effect of cadmium was apparent on the percentages of B cell counts in blood. Because of potential natural immune heterogeneity between wild rodent populations, mice immune responses were analysed and compared grouped by captured locations. Capture location had significant effect on the total counts of white blood cells. Increasing cadmium exposure in wood mice captured from polluted sites was associated with a decrease of splenic PFC counts. This field research shows that wood mice antibody responses can be impaired by cadmium exposure, even at low environmental levels, by affecting B cell functioning mainly. Impaired B cell function can make exposed mice more susceptible to infections, potentially increasing the reservoir function of their populations. It also shows that immunomodulatory effects in the field should be assessed site specifically.
Mostrar más [+] Menos [-]Increase of N2O production during nitrate reduction after long-term sulfide addition in lake sediment microcosms
2021
Li, Shengjie | Pang, Yunmeng | Ji, Guodong
Microbial denitrification is a main source of nitrous oxide (N₂O) emissions which have strong greenhouse effect and destroy stratospheric ozone. Though the importance of sulfide driven chemoautotrophic denitrification has been recognized, its contribution to N₂O emissions in nature remains elusive. We built up long-term sulfide-added microcosms with sediments from two freshwater lakes. Chemistry analysis confirmed sulfide could drive nitrate respiration in long term. N₂O accumulated to over 1.5% of nitrate load in both microcosms after long-term sulfide addition, which was up to 12.9 times higher than N₂O accumulation without sulfide addition. Metagenomes were extracted and sequenced during microcosm incubations. 16 S rRNA genes of Thiobacillus and Defluviimonas were gradually enriched. The nitric oxide reductase with c-type cytochromes as electron donors (cNorB) increased in abundance, while the nitric oxide reductase receiving electrons from quinols (qNorB) decreased in abundance. cnorB genes similar to Thiobacillus were enriched in both microcosms. In parallel, enrichment was observed for enzymes involved in sulfur oxidation, which supplied electrons to nitrate respiration, and enzymes involved in Calvin Cycle, which sustained autotrophic cell growth, implying the coupling relationship between carbon, nitrogen and sulfur cycling processes. Our results suggested sulfur pollution considerably increased N₂O emissions in natural environments.
Mostrar más [+] Menos [-]Used disposable face masks are significant sources of microplastics to environment
2021
Chen, Xianchuan | Chen, Xiaofei | Liu, Qian | Zhao, Qichao | Xiong, Xiong | Wu, Chenxi
The consumption of disposable face masks increases greatly because of the outbreak of the COVID-19 pandemic. Inappropriate disposal of wasted face masks has already caused the pollution of the environment. As made from plastic nonwoven fabrics, disposable face masks could be a potential source of microplastics for the environment. In this study, we evaluated the ability of new and used disposable face masks of different types to release microplastics into the water. The microplastic release capacity of the used masks increased significantly from 183.00 ± 78.42 particles/piece for the new masks to 1246.62 ± 403.50 particles/piece. Most microplastics released from the face masks were medium size transparent polypropylene fibers originated from the nonwoven fabrics. The abrasion and aging during the using of face masks enhanced the releasing of microplastics since the increasing of medium size and blue microplastics. The face masks could also accumulate airborne microplastics during use. Our results indicated that used disposable masks without effective disposal could be a critical source of microplastics in the environment. The efficient allocation of mask resources and the proper disposal of wasted masks are not only beneficial to pandemic control but also to environmental safety.
Mostrar más [+] Menos [-]Revisiting the involvement of ammonia oxidizers and denitrifiers in nitrous oxide emission from cropland soils
2021
Wei, Wei | Isobe, Kazuo | Shiratori, Yutaka | Yano, Midori | Toyoda, Sakae | Koba, Keisuke | Yoshida, Naohiro | Shen, Haoyang | Senoo, Keishi
Nitrous oxide (N₂O), an ozone-depleting greenhouse gas, is generally produced by soil microbes, particularly NH₃ oxidizers and denitrifiers, and emitted in large quantities after N fertilizer application in croplands. N₂O can be produced via multiple processes, and reduced, with the involvement of more diverse microbes with different physiological constraints than previously thought; therefore, there is a lack of consensus on the production processes and microbes involved under different agricultural practices. In this study, multiple approaches were applied, including N₂O isotopocule analyses, microbial gene transcript measurements, and selective inhibition assays, to revisit the involvement of NH₃ oxidizers and denitrifiers, including the previously-overlooked taxa, in N₂O emission from a cropland, and address the biological and environmental factors controlling the N₂O production processes. Then, we synthesized the results from those approaches and revealed that the overlooked denitrifying bacteria and fungi were more involved in N₂O production than the long-studied ones. We also demonstrated that the N₂O production processes and soil microbes involved were different based on fertilization practices (plowing or surface application) and fertilization types (manure or urea). In particular, we identified the following intensified activities: (1) N₂O production by overlooked denitrifying fungi after manure fertilization onto soil surface; (2) N₂O production by overlooked denitrifying bacteria and N₂O reduction by long-studied N₂O-reducing bacteria after manure fertilization into the plowed layer; and (3) N₂O production by NH₃-oxidizing bacteria and overlooked denitrifying bacteria and fungi when urea fertilization was applied into the plowed layer. We finally propose the conceptual scheme of N flow after fertilization based on distinct physiological constraints among the diverse NH₃ oxidizers and denitrifiers, which will help us understand the environmental context-dependent N₂O emission processes.
Mostrar más [+] Menos [-]