Refinar búsqueda
Resultados 541-550 de 4,013
Occurrence and levels of polybrominated diphenyl ethers in surface sediments from the Yellow River Estuary, China Texto completo
2016
Yuan, Zijiao | Liu, Guijian | Lam, Michael Hon Wah | Liu, Houqi | Da, Chunnian
A total of 21 surface sediments collected from the Yellow River Estuary, China were analyzed for 40 kinds of polybrominated diphenyl ethers (PBDEs) using gas chromatography-mass spectrometry (GC–MS). Their levels, spatial distribution, congener profiles and possible sources were investigated. Only ten congeners were detected in the sediments. The total concentrations of the lower brominated BDEs (∑PBDEslow, PBDEs excluding BDE 209) and BDE 209 ranged from 0.482 ng/g to 1.07 ng/g and 1.16–5.40 ng/g, with an average value of 0.690 and 2.79 ng/g, respectively, which were both at the low end of the global contamination level. The congener profiles were dominated by BDE 209, with the average value accounting for 79.2% of the total PBDEs in the sediment samples. Among the nine lower brominated BDE congeners, BDE 47, 99 and 183 had high abundances. Although the commercial Penta/Octa-BDE products have been banned in most countries, the residual commercial Penta/Octa/Deca-BDE products and the debromination of highly brominated BDE compounds such as BDE 209 were still found to be the possible sources for the trace level of PBDEs in the present study area. In spite of the gradual removal of the commercial PBDEs in the world, the present research results further suggested that scientific attention should not be reduced on the issue of environmental contamination caused by these outdated chemical compounds.
Mostrar más [+] Menos [-]Acute exposure to a quinalphos containing insecticide (convoy) causes genetic damage and nuclear changes in peripheral erythrocytes of silver barb, Barbonymus gonionotus Texto completo
2016
Islam, Md. Sadiqul | Snigdhā, Jānnātula Pheradausa | Nannu, Md Tanvir Ahmed | Mostakim, Golam Mohammod | Rahman, Md Khalilur
The present study was aimed to assess the genotoxic effect in fish caused by convoy, an insecticide commercial formulation containing quinalphos, present in the aquatic waterbody. For this purpose a freshwater teleost, silver barb was exposed to sublethal concentrations (25% and 50% of LC50) of convoy and erythrocytic cellular abnormalities (ECA) and erythrocytic nuclear abnormalities (ENA) tests were performed in addition to the commonly used micronucleus (MN) assay using peripheral erythrocytes and DNA contents in the different tissues after 1, 24, 36, 48, and 72 h of exposures. The obtained results indicated that acute exposure of different sub lethal concentrations of convoy to the fish resulted in significant alterations of erythrocytes as well as significant reduction of DNA contents in blood and vital organs and tissues, such as the brain, liver, kidney and muscle. Compared to each treatment excluding control group, frequencies of ECA, ENA, and MN were found to be elevated with exposure time of the doses. From this study, we conclude that convoy is a hazardous chemical to silver barb. Bioassays can be used as a tool for screening aquatic pollution, especially for insecticides.
Mostrar más [+] Menos [-]Environmental concentrations of prednisolone alter visually mediated responses during early life stages of zebrafish (Danio rerio) Texto completo
2016
McNeil, Paul L. | Nebot, Carolina | Cepeda, Alberto | Sloman, Katherine A.
The development of the eye in vertebrates is dependent upon glucocorticoid signalling, however, specific components of the eye are sensitive to synthetic glucocorticoids. The presence of synthetic glucocorticoids within the aquatic environment may therefore have important consequences for fish, which are heavily reliant upon vision for mediating several key behaviours. The potential ethological impact of synthetic glucocorticoid oculotoxicity however has yet to be studied. Physiological and behavioural responses which are dependent upon vision were selected to investigate the possible toxicity of prednisolone, a commonly occurring synthetic glucocorticoid within the environment, during early life stages of zebrafish. Although exposure to prednisolone did not alter the morphology of the external eye, aggregation of melanin within the skin in response to increasing light levels was impeded and embryos exposed to prednisolone (10 μg/l) maintained a darkened phenotype. Exposure to prednisolone also increased the preference of embryos for a dark environment within a light dark box test in a concentration dependent manner. However the ability of embryos to detect motion appeared unaffected by prednisolone. Therefore, while significant effects were detected in several processes mediated by vision, changes occurred in a manner which suggest that vision was in itself unaffected by prednisolone. Neurological and endocrinological changes during early ontogeny are considered as likely candidates for future investigation.
Mostrar más [+] Menos [-]Does cadmium affect the toxicokinetics of permethrin in Chironomus dilutus at sublethal level? Evidence of enzymatic activity and gene expression Texto completo
2016
Chen, Xin | Li, Huizhen | Zhang, Junjie | Ding, Yuping | Yau, Ching
Pyrethroids and metals were simultaneously detected in aquatic environment and showed antagonistic lethality to the benthic invertebrate, Chironomus dilutus. Accelerated biotransformation of pyrethroids in organism by the presence of metals was proposed as the likely reason for the antagonism. Mechanistic explanation for the role of toxicokinetics of pyrethroids in the antagonistic interaction would help better understanding the reasons for the joint toxicity. The goal was achieved in the current study by evaluating the impact of cadmium on toxicokinetic parameters of permethrin in C. dilutus, and by explaining the interaction through quantifying the activity and gene expression of biotransformation-related enzymes. Toxicokinetic parameters were simulated using a first-order kinetic model. Bioconcentration factors and uptake and elimination rate constants for permethrin were not significantly changed with the addition of cadmium at sublethal level, neither did the activity of enzymes, including glutathione S-transferase (GST), carboxylesterase (CarE), catalase and lipid peroxidation. Yet, the activities of metabolism-related enzymes (GST and CarE) showed an elevating tendency with adding cadmium. Furthermore, the expression of metabolism-related genes, including cytochrome P450 and glutathione S-transferase genes were significantly up-regulated in C. dilutus exposed to a mixture of permethrin and cadmium compared with permethrin only. Although co-exposure to cadmium did not induce toxicokinetic changes of permethrin in C. dilutus, it did enhance the activity of metabolic enzymes which were encoded by the metabolism-related genes, suggesting an acceleration of biotransformation of permethrin to less toxic metabolites in the midges. This possibly explained the antagonistic interaction for permethrin and cadmium.
Mostrar más [+] Menos [-]Winter monsoon variability and its impact on aerosol concentrations in East Asia Texto completo
2016
Jeong, Jaein I. | Park, Rokjin J.
We investigate the relationship between winter aerosol concentrations over East Asia and variability in the East Asian winter monsoon (EAWM) using GEOS-Chem 3-D global chemical transport model simulations and ground-based aerosol concentration data. We find that both observed and modeled surface aerosol concentrations have strong relationships with the intensity of the EAWM over northern (30–50°N, 100–140°E) and southern (20–30°N, 100–140°E) East Asia. In strong winter monsoon years, compared to weak winter monsoon years, lower and higher surface PM2.5 concentrations by up to 25% are shown over northern and southern East Asia, respectively. Analysis of the simulated results indicates that the southward transport of aerosols is a key process controlling changes in aerosol concentrations over East Asia associated with the EAWM. Variability in the EAWM is found to play a major role in interannual variations in aerosol concentrations; consequently, changes in the EAWM will be important for understanding future changes in wintertime air quality over East Asia.
Mostrar más [+] Menos [-]Alterations in juvenile diploid and triploid African catfish skin gelatin yield and amino acid composition: Effects of chlorpyrifos and butachlor exposures Texto completo
2016
Karamī, ʻAlī | Karbalaei, Samaneh | Zad Bagher, Fariba | Ismail, Amin | Simpson, Stuart L. | Courtenay, Simon C.
Skin is a major by-product of the fisheries and aquaculture industries and is a valuable source of gelatin. This study examined the effect of triploidization on gelatin yield and proximate composition of the skin of African catfish (Clarias gariepinus). We further investigated the effects of two commonly used pesticides, chlorpyrifos (CPF) and butachlor (BUC), on the skin gelatin yield and amino acid composition in juvenile full-sibling diploid and triploid African catfish. In two separate experiments, diploid and triploid C. gariepinus were exposed for 21 days to graded CPF [mean measured: 10, 16, or 31 μg/L] or BUC concentrations [Mean measured: 22, 44, or 60 μg/L]. No differences in skin gelatin yield, amino acid or proximate compositions were observed between diploid and triploid control groups. None of the pesticide treatments affected the measured parameters in diploid fish. In triploids, however, gelatin yield was affected by CPF treatments while amino acid composition remained unchanged. Butachlor treatments did not alter any of the measured variables in triploid fish. To our knowledge, this study is the first to investigate changes in the skin gelatin yield and amino acid composition in any animal as a response to polyploidization and/or contaminant exposure.
Mostrar más [+] Menos [-]If you see one, have you seen them all?: Community-wide effects of insecticide cross-resistance in zooplankton populations near and far from agriculture Texto completo
2016
Bendis, Randall J. | Relyea, Rick A.
The worldwide use of pesticides has led to increases in agricultural yields by reducing crop losses. However, increased pesticide use has resulted in pesticide-resistant pest species and recent studies have discovered pesticide-resistance in non-target species living close to farms. Such increased tolerance not only affects the species, but can alter the entire food web. Given that some species can evolve not only resistance to a single pesticide, but also cross-resistance to other pesticides that share the same mode of action, one would predict that cross-resistance to pesticides would also have effects on the entire community and affect community stability. To address this hypothesis, we conducted an outdoor mesocosm experiment comprised of 200 identical aquatic communities with phytoplankton, periphyton, and leopard frog (Lithobates pipiens) tadpoles. To these communities, we added one of four Daphnia pulex populations that we previously discovered were either resistant or sensitive to the insecticide of chlorpyrifos as a result of living close to or far from agriculture, respectively. We then exposed the communities to either no insecticide or three different concentrations of AChE-inhibiting insecticides (chlorpyrifos, malathion or carbaryl) or sodium channel-inhibiting insecticides (permethrin or cypermethrin). We discovered that communities containing sensitive Daphnia pulex experienced phytoplankton blooms and subsequent cascades through all trophic groups including amphibians at moderate to high concentrations of all five insecticides. However, communities containing resistant D. pulex were buffered from these effects at low to moderate concentrations of all AChE-inhibiting insecticides, but were not buffered against the pyrethroid insecticides. These data suggest that a simple change in the population-level resistance of zooplankton to a single insecticide can have widespread consequences for community stability and that the effects can be extrapolated to a wide variety of pesticides that share the same mode of action.
Mostrar más [+] Menos [-]Size-dependent depletion and community disturbance of phytoplankton under intensive oyster mariculture based on HPLC pigment analysis in Daya Bay, South China Sea Texto completo
2016
Jiang, Tao | Chen, Feiyu | Yu, Zonghe | Lü, Lin | Wang, Zhaohui
In this study, we conducted a 14-month investigation in Daya Bay, southern China to understand the effects of oyster farming on phytoplankton community and biomass by using size-fractionated phytopigments. Results proved the filtering effects of oysters on phytoplankton biomass. During the oyster culture period, the average concentration of total chlorophyll a (sum of size-fractionated Chl a) within the farming area was approximately 60% lower than that at the reference site. Phytoplankton depletion in the aquaculture zone mainly occurred in micro-sized fractions (>20 μm) of Chl a, fucoxanthin, and peridinin. The influence of oyster filtration on nano-sized (2.7–20 μm) pigments seemed less than that on micro-sized ones. The depletion of peridinin and 19′-hex-fucoxanthin in aquaculture zone was higher than those of the other pigments, which indicated that flagellated cells might be selectively filtered by oysters and could be more easily influenced by oyster aquaculture. The pico-sized Chl a (<2.7 μm) comprised 24% of total Chl a on the average in the aquaculture zone during the cultural period compared to 6% in the reference site. Picoeukaryote abundance, which was determined via flow cytometry, was significantly higher in the aquaculture zone than in the non-aquaculture areas. The abundance of picoeukaryote is significantly and positively correlated with the concentrations of pico-sized prasinoxanthin, violaxanthin, and neoxanthin, indicating that picoeukaryote is dominated by those in prasinophyte. The results suggest that oyster aquaculture might stimulate the growth of prasinophyte, although the seasonal variations are mainly controlled by the water temperature in the study area. This research highlights the successful use of size-fractionated phytopigments to estimate size-specific phytoplankton biomass and community, which can be applied as a routine method to monitor the environmental effect and food resources of bivalve aquaculture.
Mostrar más [+] Menos [-]Competitive sorption of heavy metals by water hyacinth roots Texto completo
2016
Zheng, Jia-Chuan | Liu, Hou-Qi | Feng, Huimin | Li, Wen-Wei | Lam, Michael Hon-Wah | Lam, Paul Kwan-Sing | Yu, Han-Qing
Heavy metal pollution is a global issue severely constraining aquaculture practices, not only deteriorating the aquatic environment but also threatening the aquaculture production. One promising solution is adopting aquaponics systems where a synergy can be established between aquaculture and aquatic plants for metal sorption, but the interactions of multiple metals in such aquatic plants are poorly understood. In this study, we investigated the absorption behaviors of Cu(II) and Cd(II) in water by water hyacinth roots in both single- and binary-metal systems. Cu(II) and Cd(II) were individually removed by water hyacinth roots at high efficiency, accompanied with release of protons and cations such as Ca2+ and Mg2+. However, in a binary-metal arrangement, the Cd(II) sorption was significantly inhibited by Cu(II), and the higher sorption affinity of Cu(II) accounted for its competitive sorption advantage. Ionic exchange was identified as a predominant mechanism of the metal sorption by water hyacinth roots, and the amine and oxygen-containing groups are the main binding sites accounting for metal sorption via chelation or coordination. This study highlights the interactive impacts of different metals during their sorption by water hyacinth roots and elucidates the underlying mechanism of metal competitive sorption, which may provide useful implications for optimization of phytoremediation system and development of more sustainable aquaculture industry.
Mostrar más [+] Menos [-]Assessing the uptake of arsenic and antimony from contaminated soil by radish (Raphanus sativus) using DGT and selective extractions Texto completo
2016
Ngo, Lien K. | Pinch, Benjamin M. | Bennett, William W. | Teasdale, Peter R. | Jolley, Dianne F.
The enrichment of soil arsenic (As) and antimony (Sb) is putting increasing pressure on the environment and human health. The biogeochemical behaviour of Sb and its uptake mechanisms by plants are poorly understood and generally assumed to be similar to that of As. In this study, the lability of As and Sb under agricultural conditions in historically contaminated soils was assessed. Soils were prepared by mixing historically As and Sb-contaminated soil with an uncontaminated soil at different ratios. The lability of As and Sb in the soils was assessed using various approaches: the diffusive gradients in thin films technique (DGT) (as CDGT), soil solution analysis, and sequential extraction procedure (SEP). Lability was compared to the bioaccumulation of As and Sb by various compartments of radish (Raphanus sativus) grown in these soils in a pot experiment. Irrespective of the method, all of the labile fractions showed that both As and Sb were firmly bound to the solid phases, and that Sb was less mobile than As, although total soil Sb concentrations were higher than total soil As. The bioassay demonstrated low bioaccumulation of As and Sb into R. sativus due to their low lability of As and Sb in soils and that there are likely to be differences in their mechanisms of uptake. As accumulated in R. sativus roots was much higher (2.5–21 times) than that of Sb, while the Sb translocated from roots to shoots was approximately 2.5 times higher than that of As. As and Sb in R. sativus tissues were strongly correlated with their labile concentrations measured by DGT, soil solution, and SEP. These techniques are useful measures for predicting bioavailable As and Sb in the historically contaminated soil to R. sativus. This is the first study to demonstrate the suitability of DGT to measure labile Sb in soils.
Mostrar más [+] Menos [-]