Refinar búsqueda
Resultados 551-560 de 4,935
Lichens as a spatial record of metal air pollution in the industrialized city of Huelva (SW Spain) Texto completo
2019
Parviainen, Annika | Casares Porcel, Manuel | Marchesi, Claudio | Garrido, Carlos J.
Lichens as a spatial record of metal air pollution in the industrialized city of Huelva (SW Spain) Texto completo
2019
Parviainen, Annika | Casares Porcel, Manuel | Marchesi, Claudio | Garrido, Carlos J.
Huelva is a highly industrialized city in SW Spain hosting, among others, a Cu smelter, a phosphate fertilizer plant, a power plant, and oil refineries. This study aims to evaluate metal concentrations in lichens as bioindicators of atmospheric pollution in the impacted urban areas. Xanthoria parietina species from Huelva and nearby villages, as well as reference samples from remote, non-contaminated urban areas, were analyzed for trace elements (V, Cr, Mn, Co, Ni, Cu, Zn, Sr, As, Cd, Sb, Cs, Ba, La, Ce, Pr, Nd, Sm, Er, Tm, Yb, Lu, Pb, Th, U) using Inductively Coupled Plasma-Mass Spectrometry; and for major elements (Ca, K, Mg, P, and S) by Inductively Coupled Plasma-Optical Emission Spectrometry after acid digestion.The metal composition of X. parietina exhibits spatial distribution patterns with extremely elevated concentrations (Co, Ni, Cu, Zn, As, Cd, Sb, Ba, Pb, U, and S) in the surroundings of the industrial estates to <1 km distance. Mean concentrations were significantly lower in the urban areas >1 km from the pollution sources. However, air pollution persists in the urban areas up to 4 km away, as the mean concentrations of Cu, Zn, As, Cd, Sb and S remained considerably elevated in comparison to the reference samples. Though rigorous source apportionment analysis was not the aim of this study, a good positive correlation of our results with metal abundances in ambient particulate matter and in pollution sources points to the Cu smelter as the main source of pollution. Hence, the severe air pollution affecting Huelva and nearby urban areas may be considered a serious health risk to local residents.
Mostrar más [+] Menos [-]Lichens as a spatial record of metal air pollution in the industrialized city of Huelva (SW Spain) Texto completo
2019
Parviainen, Annika Jenni Johana | Casares Porcel, Manuel | Marchesi, Claudio | Garrido, Carlos Jesús
Huelva is a highly industrialized city in SW Spain hosting, among others, a Cu smelter, a phosphate fertilizer plant, a power plant, and oil refineries. This study aims to evaluate metal concentrations in lichens as bioindicators of atmospheric pollution in the impacted urban areas. Xanthoria parietina species from Huelva and nearby villages, as well as reference samples from remote, non-contaminated urban areas, were analyzed for trace elements (V, Cr, Mn, Co, Ni, Cu, Zn, Sr, As, Cd, Sb, Cs, Ba, La, Ce, Pr, Nd, Sm, Er, Tm, Yb, Lu, Pb, Th, U) using Inductively Coupled Plasma-Mass Spectrometry; and for major elements (Ca, K, Mg, P, and S) by Inductively Coupled Plasma-Optical Emission Spectrometry after acid digestion. The metal composition of X. parietina exhibits spatial distribution patterns with extremely elevated concentrations (Co, Ni, Cu, Zn, As, Cd, Sb, Ba, Pb, U, and S) in the surroundings of the industrial estates to <1 km distance. Mean concentrations were significantly lower in the urban areas >1 km from the pollution sources. However, air pollution persists in the urban areas up to 4 km away, as the mean concentrations of Cu, Zn, As, Cd, Sb and S remained considerably elevated in comparison to the reference samples. Though rigorous source apportionment analysis was not the aim of this study, a good positive correlation of our results with metal abundances in ambient particulate matter and in pollution sources points to the Cu smelter as the main source of pollution. Hence, the severe air pollution affecting Huelva and nearby urban areas may be considered a serious health risk to local residents.
Mostrar más [+] Menos [-]Integrated thyroid endocrine disrupting effect on zebrafish (Danio rario) larvae via simultaneously repressing type II iodothyronine deiodinase and activating thyroid receptor-mediated signaling following waterborne exposure to trace azocyclotin Texto completo
2019
Jiao, Fang | Qiao, Kun | Jiang, Yao | Li, Shuying | Zhao, Jinghao | Gui, Wenjun
As a widely used organotin acaricide nowadays, azocyclotin (ACT) could induce thyroidal endocrine disruption in fishes and amphibians, but its dominant disrupting mode remains unknown. In this study, zebrafish were firstly exposed to ACT (0.18–0.36 ng/mL) from 2 hpf (hours post fertilization) to 30 dpf (days post fertilization), and a series of developmental toxicological endpoints and thyroid hormones were measured. Result showed that no developmental toxicity to zebrafish was found in 0.18 and 0.24 ng/mL groups except decreased body weight (30 dpf, 0.24 ng/mL). However, exposed to 0.36 ng/mL ACT led to reductions in heartbeat (48 hpf), hatching rate (72 hpf) and bodyweight (30 dpf). General tendencies of decreases in free T3 but increases in free T4 and reductions in ratio of free T3/T4 were also found, inferring that type II deiodinase (Dio2) was repressed. This inference was confirmed by Western analysis that Dio2 expression reduced by 42.7% after 0.36 ng/mL ACT treatment. Moreover, RNA-Seq analysis implied that exposed to 0.36 ng/mL ACT altered the genome-wide gene expression profiles of zebrafish. Totally 5660 genes (involving 3154 down-regulated and 2596 up-regulated genes) were differentially expressed, and 13 deferentially expressed genes including down-regulated dio2 were significantly enriched in thyroid hormone signaling pathway. Subsequently, an in vitro thyroid receptor-reporter gene assay using GH3 cells was performed to further explore the potential disrupting mechanism. Result showed that luciferase activity slightly increased after exposure to ACT alone or ACT combined with low level T3, but was suppressed when combined with high level T3. It indicted there probably existed a competitive relationship in some extent between ACT and T3 in vivo. Overall, the present study provided preliminary evidences that long-term exposure to trace ACT repressed Dio2 expression, declined T3 and then activated thyroid receptor-mediated signaling, thereby leading to integrated thyroid endocrine disruption in zebrafish larvae.
Mostrar más [+] Menos [-]Antibiotic resistance and microbiota in the gut of Chinese four major freshwater carp from retail markets Texto completo
2019
Yuan, Li | Wang, Li | Li, Zheng-Hao | Zhang, Ming-Qi | Shao, Wei | Sheng, Guo-Ping
Fish-associated antibiotic resistance genes (ARGs) have attracted increasing attention due to their potential risks to human beings via the food chain. However, data are scarce regarding the antibiotic resistance in fish themselves. Herein, the antibiotic resistance genes (ARGs) were assessed in the gut of four major Chinese freshwater carp (i.e., silver carp, grass carp, bighead carp, and crucian carp) from food retail markets. Results show that the abundances of target ARGs (e.g., tetA, tetO, tetQ, tetW, sulI, sulII, and blaTEM₋₁) and class 1 integrase (intI1) were in the range 9.4 × 10⁻⁶ - 1.6 × 10⁻¹ and 6.7 × 10⁻⁵ - 5.2 × 10⁻² gene copies per 16S rRNA gene, respectively. The sulI, sulII, and tetQ strongly correlated with silver and mercury resistance genes (e.g., silE and merR). The microbial taxa of fish gut could be partly separated among retail markets based on the PCA analysis. About 15.0% of the OTUs in fish gut were shared and 74.5% of the shared OTUs were identified as Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, and Proteobacteria. These phyla may constitute the core microbiota in the guts of the four Chinese freshwater carp. The possible ARG hosts were revealed based on the network analysis, and the presence of pathogen-associated resistant genera in fish gut highlights the need to fully understand their potential human health risks.
Mostrar más [+] Menos [-]Current evidence for a role of epigenetic mechanisms in response to ionizing radiation in an ecotoxicological context Texto completo
2019
Horemans, Nele | Spurgeon, David J. | Lecomte-Pradines, Catherine | Saenen, Eline | Bradshaw, Clare | Oughton, Deborah | Rasnaca, Ilze | Kamstra, Jorke H. | Adam-Guillermin, Christelle
The issue of potential long-term or hereditary effects for both humans and wildlife exposed to low doses (or dose rates) of ionising radiation is a major concern. Chronic exposure to ionising radiation, defined as an exposure over a large fraction of the organism's lifespan or even over several generations, can possibly have consequences in the progeny. Recent work has begun to show that epigenetics plays an important role in adaptation of organisms challenged to environmental stimulae. Changes to so-called epigenetic marks such as histone modifications, DNA methylation and non-coding RNAs result in altered transcriptomes and proteomes, without directly changing the DNA sequence. Moreover, some of these environmentally-induced epigenetic changes tend to persist over generations, and thus, epigenetic modifications are regarded as the conduits for environmental influence on the genome.Here, we review the current knowledge of possible involvement of epigenetics in the cascade of responses resulting from environmental exposure to ionising radiation. In addition, from a comparison of lab and field obtained data, we investigate evidence on radiation-induced changes in the epigenome and in particular the total or locus specific levels of DNA methylation. The challenges for future research and possible use of changes as an early warning (biomarker) of radiosensitivity and individual exposure is discussed. Such a biomarker could be used to detect and better understand the mechanisms of toxic action and inter/intra-species susceptibility to radiation within an environmental risk assessment and management context.
Mostrar más [+] Menos [-]Neurotoxicity of nonylphenol exposure on Caenorhabditis elegans induced by reactive oxidative species and disturbance synthesis of serotonin Texto completo
2019
Cao, Xue | Wang, Xiaoli | Chen, Haibo | Li, Hui | T̤āriq, Muḥammad | Wang, Chen | Zhou, Yuanyuan | Liu, Yongdi
The present study was performed to evaluate the neurobehavioural deficit induced by nonylphenol (NP), a well-known xenobiotic chemical. The neurotoxic mechanism from oxidative stress and serotonin-related progress was also investigated. Caenorhabditis elegans was exposed at different levels of NP ranging from 0 to 200 μg L⁻¹ for 10 days. The results revealed that from a relatively low concentration (i.e., 10 μg L⁻¹), significant effects including decreased head thrashes, body bends and forging behaviour could be observed, along with impaired learning and memory behaviour plasticity. The level of reactive oxygen species (ROS) in head was significantly elevated with the increase of NP concentrations from 10 to 200 μg L⁻¹. Through antioxidant experiment, the oxidative damage caused by NP restored to some extent. At a NP concentration of 200 μg L⁻¹, the significant increased expression of stress-related genes, including sod-1, sod-3, ctl-2, ctl-3 and cyp-35A2 gene, was observed from integrated gene expression profiles. In addition, in comparison with wild-type N2 worms, the ROS accumulation was increased significantly with the mutation of sod-3. Tryptophan hydroxylase (TPH) in ADF and NSM neurons sharply decreased at the concentrations of 10–200 μg L⁻¹. The transcription of TPH synthesis-related genes and serotonin-related genes were both suppressed, including tph-1, cat-1, cat-4, ser-1, and mod-5. Overall, these results indicated that NP could induce neurotoxicity on Caenorhabditis elegans through excessive induction of ROS and disturbance synthesis of serotonin. The conducted research opened up new avenues for more effective exploration of neurotoxicity caused by NP.
Mostrar más [+] Menos [-]Protective effect of green tea catechin against urban fine dust particle-induced skin aging by regulation of NF-κB, AP-1, and MAPKs signaling pathways Texto completo
2019
Wang, Lei | Lee, WonWoo | Cui, Yong Ri | Ahn, Ginnae | Jeon, You-Jin
The increase in ambient fine dust particles (FDP) due to urbanization and industrialization has been identified as a major contributor to air pollution. It has become a serious issue that threatens human health because it causes respiratory diseases and skin aging. In the present study, the protective effect of the green tea catechin, (−)-epigallocatechin gallate (EGCG), against FDP (ERM-CZ100)-stimulated skin aging in human dermal fibroblasts (HDFs) was investigated. The results demonstrate that EGCG significantly and dose-dependently scavenged intracellular reactive oxygen species (ROS) in and increased the viability of FDP-stimulated HDFs. In addition, EGCG dose-dependently recovered collagen synthesis and inhibited intracellular elastase and collagenase activities. Moreover, EGCG decreased the expression of human matrix metalloproteinases (MMPs) via regulation of nuclear factor kappa B (NF-κB), activator protein 1 (AP-1), and mitogen-activated protein kinases (MAPKs) signaling pathways in FDP-stimulated HDFs. This study suggests that EGCG is a potential anti-aging candidate that can be used for FDP-induced skin aging as a therapeutic agent itself or as an ingredient in pharmaceutical and cosmeceutical products.
Mostrar más [+] Menos [-]Spatio-temporal variations of shallow and deep well groundwater nitrate concentrations along the Indus River floodplain aquifer in Pakistan Texto completo
2019
Khan, Shahrukh Nawaz | Yasmeen, Tahira | Riaz, Muhammad | Arif, Muhammad Saleem | Rizwan, Muhammad | Ali, Shafaqat | Tariq, Azeem | Jessen, Søren
Excessive use of nitrogenous fertilizers and their improper management in agriculture causes nitrate contamination of surface and groundwater resources. This study was conducted along the seasonally flooded alluvial agricultural area of Indus River Basin to determine the spatial and temporal dynamics of nitrate concentrations in the groundwater along the river. Total of 112 samples were collected from shallow (30–40 ft) and deep groundwater (120–150 ft) wells at seven sites, 25 km apart from each other and covered an area of 170 km along the river, during four sampling campaigns between October 2016 to May 2017 i.e. in start, mid and end of dry season. The study period covered the whole agricultural cycle including the wet summer season with no agricultural activities under flooding and the sampling sites were always less than 2 km from the river bank. Nitrate concentrations of shallow wells were 15–54 and 20–45 mg L⁻¹ during the start and middle of dry season, respectively. However, at the end of the dry season, the highest nitrate concentrations of 35–75 mg L⁻¹ were recorded and 70% of these samples contained nitrate concentrations above the permissible limit 50 mg L⁻¹. Similar seasonal patterns of nitrate concentrations were observed in deep wells, however, δ¹⁸O data suggested lower recharge in deep well than shallow wells. The results illustrated that high nitrate concentrations in shallow wells were associated with high δ¹⁸O values indicating that the quantity of evaporated water infiltrated from the floodplain, possibly from distribution channels, along with the nitrate polluting shallow wells more than the deep wells. At the end of the dry season, nitrate concentrations exceeded the permissible limits in both shallow and deep wells, which possibly happened due to the horizontal movement of groundwater along with the nitrate mixing during vertical seepage of river water to the aquifers.
Mostrar más [+] Menos [-]Chemistry-triggered events of PM2.5 explosive growth during late autumn and winter in Shanghai, China Texto completo
2019
Sun, Wenwen | Wang, Dongfang | Yao, Lan | Fu, Hongbo | Fu, Qingyan | Wang, Hongli | Li, Qing | Wang, Lin | Yang, Xin | Xian, Aiyong | Wang, Gehui | Xiao, Hang | Chen, Jianmin
To better understand the mechanism of PM₂.₅ explosive growth (EG), we conducted concurrent measurements of gaseous pollutants, PM₂.₅ and its chemical composition (inorganic ions, organic carbon, and element carbon) with a time resolution of 1 h in Shanghai in late autumn and winter from 2014 to 2017. In this study, the EG events, which are defined as the net increase in the mass concentration of PM₂.₅ by more than 100 μg m⁻³ within hours, are separately discussed for 3, 6, or 9 h. The number of EG events decreased from 19 cases in 2014 to 6 cases in 2017 and the corresponding PM₂.₅ concentration on average decreased from 183.6 μg m⁻³ to 128.8 μg m⁻³. Both regional transport and stagnant weather (windspeed < 2.0 m s⁻¹) could lead to EG events. The potential source contribution function (PSCF) shows that the major high-pollution region is in East China (including Zhejiang, Jiangsu, Shandong, and Anhui Province) and the North China Plain. The contribution of stagnant conditions to EG episode hours of 55% (198 h, 156.9 μg m⁻³) is higher than that of regional transport (45%, 230 h, 163.0 μg m⁻³). To study the impact of local emission, chemical characteristics and driving factors of EG were discussed under stagnant conditions. The major components contributing to PM₂.₅ are NO₃⁻ (17.9%), organics (14.1%), SO₄²⁻ (13.1%), and NH₄⁺ (13.1%). The driving factors of EG events are the secondary aerosol formation of sulfate and nitrate and primary emissions (vehicle emissions, fireworks, and biomass burning), but the secondary transformation contributes more to EG events. The formation of sulfate and nitrate is dominated by gas-phase oxidation and heterogeneous reactions, which are enhanced by a high relative humidity. The current study helps to understand the chemical mechanism of haze and provides a scientific basis for air pollution control in Shanghai.
Mostrar más [+] Menos [-]Effects and mechanisms of phytoalexins on the removal of polycyclic aromatic hydrocarbons (PAHs) by an endophytic bacterium isolated from ryegrass Texto completo
2019
Lu, Li | Chai, Qiwei | Ho, Sin-ying | Yang, Chunping | Zhang, Dong
Plant-endophyte synergism has been demonstrated to play a key role in the phytoremediation of contaminated water and soil. Phytoalexins, a type of chemical component in the plant apoplast, can be produced by plants in response to stimulation by endophytes. Phytoalexins may have distinct effects on the nutritional and metabolic functions of endophytes; however, direct evidence is not available to prove the effect of phytoalexins on the hydrophobic organic contaminants (HOC)-degradation activity of endophytes. In this paper, three different types of phytoalexins, coumarin, resveratrol and rutin, were selected to study their effect on the removal of polycyclic aromatic hydrocarbons (PAHs) by an endophytic bacterium Methylobacterium extorquens C1. The effects of the three phytoalexins on bacterial sorption and intracellular enzymatic activities were tested to further analyze the mechanism by which the phytoalexins affect the PAH degradation performance of M. extorquens C1. The results showed that the removal rate of PAHs by M. extorquens C1 increased in the presence of low levels of the three phytoalexins. The most effective concentrations of coumarin, resveratrol and rutin were 0.20, 0.15, and 0.25 mg/L, respectively, and the removal rate of PAHs was increased by approximately 18.3–35.0%. At the optimal concentrations, the three phytoalexins significantly promoted the sorption of PAHs by M. extorquens C1, and also enhanced the activities of catechol dioxygenases and dehydrogenase of M. extorquens C1. The positive effect of phytoalexins on both bacterial sorption and intracellular enzymatic activities promotes the overall removal of PAHs from endophytes. These results may deepen our understanding of plant-microbe cooperative mechanisms in the degradation of organic pollutants and provide a new approach for chemically enhanced bioremediation in the future.
Mostrar más [+] Menos [-]Synergetic effects of novel aromatic brominated and chlorinated disinfection byproducts on Vibrio qinghaiensis sp.-Q67 Texto completo
2019
Chen, Yu-Han | Qin, Li-Tang | Mo, Ling-Yun | Zhao, Dan-Na | Zeng, Hong-Hu | Liang, Yan-Peng
Aromatic halogenated chemicals are an unregulated class of byproducts (DBPs) generated from disinfection processes in the water environment. Information on the toxicological interactions, such as antagonism and synergism, present in DBP mixtures remains limited. This study aimed to determine the toxicological effects of aromatic halogenated DBP mixtures on the freshwater bacterium Vibrio qinghaiensis sp.-Q67. The acute toxicities of seven DBPs and their binary mixtures toward V. qinghaiensis sp.-Q67 were determined through microplate toxicity analysis. The toxicities of single DBPs were ranked as follows: 2,5-dibromohydroquinone > 2,4-dibromophenol > 4-bromo-2-chlorophenol ≈ 2,6-dibromo-4-nitrophenol > 2,6-dichloro-4-nitrophenol > 2-bromo-4-chlorophenol > 4-bromophenol. The percentages of synergism (experimental values higher than the predicted concentration addition) on the levels of 50%, 20%, and 10% effective concentrations reached 61%, 41%, and 31%, respectively. These results indicated that the probability of synergism decreased as concentration levels decreased. The synergetic effects of the compounds were dependent on concentration levels and concentration ratios. The proposed quantitative structure–activity relationship model can be used to predict the interactive toxicities exerted by 105 binary DBP mixture rays of 21 DBP mixture systems.
Mostrar más [+] Menos [-]