Refinar búsqueda
Resultados 5631-5640 de 6,560
Performance assessment of water reuse strategies using integrated framework of urban water metabolism and water-energy-pollution nexus Texto completo
2020
Landa-Cansigno, Oriana | Behzadian, Kourosh | Davila-Cano, Diego I. | Campos, Luiza C.
This paper evaluates the metabolism-based performance of a number of centralised and decentralised water reuse strategies and their impact on integrated urban water systems (UWS) based on the nexus of water-energy-pollution. The performance assessment is based on a comprehensive and quantitative framework of urban water metabolism developed for integrated UWS over a long-term planning horizon. UWS performance is quantified based on the tracking down of mass balance flows/fluxes of water, energy, materials, costs, pollutants, and other environmental impacts using the WaterMet² tool. The assessment framework is defined as a set of key performance indicators (KPIs) within the context of the water-energy-pollution nexus. The strategies comprise six decentralised water reuse configurations (greywater or domestic wastewater) and three centralised ones, all within three proportions of adoption by domestic users (i.e. 20, 50, and 100%). This methodology was demonstrated in the real-world case study of San Francisco del Rincon and Purisima del Rincon cities in Mexico. The results indicate that decentralised water reuse strategies using domestic wastewater can provide the best performance in the UWS with respect to water conservation, green house gas (GHG) emissions, and eutrophication indicators, while energy saving is almost negligible. On the other hand, centralised strategies can achieve the best performance for energy saving among the water reuse strategies. The results also show metabolism performance assessment in a complex system such as integrated UWS can reveal the magnitude of the interactions between the nexus elements (i.e. water, energy, and pollution). In addition, it can also reveal any unexpected influences of these elements that might exist between the UWS components and overall system.
Mostrar más [+] Menos [-]The analysis of green roof’s runoff volumes and its water quality in an experimental study in Porto Alegre, Southern Brazil Texto completo
2020
Castro, Andréa Souza | Goldenfum, J. A. (Joel Avruch) | da Silveira, André Lopes | DallAgnol, Ana Luiza Bertani | Loebens, Larissa | Demarco, Carolina Faccio | Leandro, Diuliana | Nadaleti, Willian Cézar | Quadro, Maurizio Silveira
The green roofs are structures characterized by the application of vegetation cover in the buildings, using adequate waterproofing and drainage systems. It allows the reduction of surface runoff and delay in peak flow, contributing to the mitigation of flood events in urban areas. Therefore, this study aimed to evaluate the effect of the use of vegetal coverings on the surface runoff, taking into account quantitative and qualitative aspects, using an experimental module installed in the city of Porto Alegre, Brazil. The experimental station consisted of four modules: two horizontal modules with and without vegetation cover and two modules with slopes of 15° with and without vegetation cover. It was evaluated 19 precipitation events, and it was verified the volumes drained in each module after 3, 6 and 12 h from the beginning of precipitation. The water samples were collected in order to analyse the quality of the runoff from the experimental modules. The results have shown that the use of vegetal coverings can provide better distribution of the surface runoff, as well as a decrease of the speed of excess water release with no surface runoff in the first 3 h after the onset of rainfall in the horizontal module. Additionally, it was proved the reduction in drained volumes, with the flat module with vegetation cover being capable of retaining completely precipitations with volumes of approximately 22 mm. The vegetation cover module in roofs was the one that has presented better results regarding the reduction of the flow, presenting an average retention percentage of 91.7% for the first 3 h, indicating that the slope is an important factor. The physical-chemical analysis of the water shows that for all analysed modules, it is possible to use water for non-potable uses, although the water quality of the modules with vegetation cover is lower when compared to the water coming from the module without vegetation cover.
Mostrar más [+] Menos [-]Evaluation of combined developmental neurological toxicity of di (n-butyl) phthalates and lead using immature mice Texto completo
2020
Mao, Guanghua | Liu, Hongyang | Ding, Yangyang | Zhang, Weijie | Chen, Hui | Zhao, Ting | Feng, Weiwei | Wu, Xiangyang | Yang, Liuqing
In this study, the immature mice were taken to assess the potential neurological toxicity of lead (Pb) and di (n-butyl) phthalates (DBP) combination exposure. Mouse administration with DBP combination with Pb exhibited longer escape latency and lower average number of crossing of the platform. Pb content in the tissues was increased, especially in the brain, after Pb exposure as compared to those without Pb exposure. The alterations of oxidative damages in tissues (MDA and SOD) and biochemical indicators in the brain (AChE, TNOS, and iNOS) were observed, as well as the synergistic effect of joint exposure. Expressions of apoptosis-related protein (bax/bcl-2 ratio and caspase-3) were significantly increased in the hippocampus, while the bcl-2 was remarkably decreased and no significant differences were observed on the bax. The results suggested that the possible mechanisms for the learning and memory ability impairments were as follows: Firstly, the combination exposure induced the occurrence of lipid peroxidation in the brain, leading to damage to the brain cells. Secondly, it destroyed the normal metabolic balance of ACh, causing nerve damage in mice. Thirdly, it induced apoptosis in mouse hippocampal cells. The overall findings revealed that Pb and DBP co-exposure greatly influenced the developmental nervous system and accompanied with synergistic toxic effect.
Mostrar más [+] Menos [-]One academic year laboratory and student breathing zone formaldehyde level, measured by gas-piston hand pump at gross anatomy laboratory, Siriraj Hospital, Thailand Texto completo
2020
Durongphan, Anuch | Amornmettajit, Nutchaya | Rungruang, Jarun | Nitimanee, Eakkapong | Panichareon, Benjaporn
This study used a formaldehyde detector tube with a gas-piston hand pump to assess ceiling levels of student breathing zone and gross laboratory environment across the 2018 academic year. The room dimension was 28.6 × 55.48 × 5.5 m. It contained 90 cadavers, each placed on a hinged cover table. We measured before and during nine body region dissections. There was a significant difference (p < 0.01) between student exposure and laboratory environment levels. The highest level was student exposure during body wall dissection (2.7 ppm), the first laboratory; students may accidentally enter body cavities. The latter two were in abdominal (1.85 ppm) and lower limb dissections (1.49 ppm). The three highest environment levels were in different regions; spinal cord removal (1.13 ppm), lower limb (0.72 ppm), and thorax (0.71 ppm) dissection. Only the perineum environment level (0.09 ppm) was below the NIOSH ceiling level (0.1 ppm), which may result from the table covers that had been opened for 2 weeks before measurement. This study finding signified the importance of student personal exposure monitoring and encouraged the academic year measurement. Because each laboratory has unique factors, those affect formaldehyde levels; dissection steps, dissection table design, cadaver storage protocol, and heating-ventilation-air conditioning system performance, for instance.
Mostrar más [+] Menos [-]Sub-type source profiles of fine particles for fugitive dust and accumulative health risks of heavy metals: a case study in a fast-developing city of China Texto completo
2020
Wu, Fangqi | Kong, Shaofei | Yan, Qin | Wang, Wei | Liu, Haibiao | Wu, Jian | Zheng, Huang | Zheng, Shurui | Cheng, Yi | Niu, Zhenzhen | Liu, Dantong | Qi, Shihua
Sub-type source profiles for atmospheric fine particle (PM₂.₅) were still scare in China, which limited the accurate source identification of it. Fugitive dust (including road dust, soil dust, resuspended dust, and construction dust, etc.) was one type of the most important contributors to PM₂.₅ and its associated toxic metals held potential threaten to human health. The chemical compositions, sources, and health risks of sub-type fugitive dust deserved an investigation for further accurate control of particles and alleviating human health risks. A total of sixty-five fugitive dust samples were collected in Suzhou, a fast-developing city in southern China, including eleven sub-types of road dust (overpass, main street, collector street, and ordinary street), soil dust (farmland and tree lawn), resuspended dust (site types were corresponding to those of road dust), and construction dust (large construction sites). Chemical analysis of water-soluble ions, elements, and carbonaceous components was carried out to establish the sub-type source profiles of PM₂.₅ for fugitive dust. Results showed that crustal elements were the most abundant components of fugitive dust, and soil dust was less polluted by anthropogenic activities. High contents of OC and low contents of EC were found in all the eleven types of dust. Equivalent ratios of anions and cations indicated that the fugitive dust was obviously alkaline. The contents of OC and EC in the four types of road dust were higher than those in other types of dust, while there existed differences among the sub-types of road dust. The NO₃⁻/SO₄²⁻ ratios (0.03–0.09) implied that coal-burning and motor vehicle emission co-existed in Suzhou. Coefficient divergence (CD) values of eleven sub-type source profiles showed that there were certain differences among them, which suggested the possibility of sub-type source identification. Cluster analysis indicated the heavy metals in fugitive dust were mainly from crustal materials, metallurgical manufacturing, vehicle emissions, and industrial activities. The enrichment degree of heavy metals for the four types of road dust was also inconsistent. Heavy metals in road dust and soil dust posed a non-carcinogenic risk to children through direct ingestion, and the non-carcinogenic risk of direct intake of heavy metals was much higher than that of respiratory and skin contact. It was found that the accumulative health risks of heavy metals were higher in densely populated areas, traffic intensive areas, and industrial areas through the spatial analysis. This study firstly discussed the chemical compositions of PM₂.₅ for eleven sub-types of fugitive dust in a Chinese city and assessed the accumulative health risks of heavy metals, which could be a demonstration for further related researches.
Mostrar más [+] Menos [-]Uncovering residents’ behaviors, attitudes, and WTP for recycling e-waste: a case study of Zhuhai city, China Texto completo
2020
Cai, Kaihan | Song, Qingbin | Peng, Shaohong | Yuan, Wenyi | Liang, Yangyang | Li, Jinhui
China is among the countries facing the most serious pollution effects of e-waste. Many studies have focused on e-waste recycling laws and regulations, recycling technologies, and the pollution situation in China. However, there is a lack of case studies from the perspective of the residents’ attitudes and opinions about e-waste recycling. Based on 474 families surveyed by questionnaire, this study, taking Zhuhai City as one example, investigated residents’ behaviors and attitudes toward e-waste disposal, and their willingness to pay (WTP) for e-waste recycling. A majority (76.4%) of respondents realized that the improper treatment of e-waste would cause serious threats to the environment and human health. Only 38.2% of respondents were willing to pay for e-waste recycling. Most respondents believed that the fee should be borne by government and manufacturers. These results imply that income level and satisfaction with management will promote WTP significantly, whereas the recovery price is a negative influence on the respondents’ WTP. The WTP values were positively correlated with environmental awareness and income at 5% and 10%, respectively. Finally, the estimated average monthly WTP value per household in Zhuhai City is 10.2 RMB ($1.6).
Mostrar más [+] Menos [-]Accumulation and distribution of cadmium and lead in 28 oilseed rape cultivars grown in a contaminated field Texto completo
2020
Cao, Xuerui | Wang, Xiaozi | Tong, Wenbin | Gurajala, Hanumanth Kumar | He, Zhenli | Yang, Xiaoe
Heavy metal pollution in soils has become an important concern for human health. Therefore, it is vital to develop suitable remediation strategies for contaminated soils. Oilseed rape tolerates high concentrations of heavy metals and is a promising candidate for the phytoextraction of cadmium (Cd) and lead (Pb) from metal-contaminated soils. A field experiment was conducted to evaluate 28 oilseed rape cultivars including Brassica napus L. and Brassica juncea L. for their ability to accumulate Cd and Pb. These cultivars were grown in a field co-contaminated with Cd (0.78 mg kg⁻¹) and Pb (330 mg kg⁻¹). The results showed that concentrations in shoots ranged from 1.22 to 3.01 mg kg⁻¹ for Cd and from 10.8 to 29.5 mg kg⁻¹ for Pb. Cadmium and Pb accumulations in shoots could reach 83.4 and 799 μg plant⁻¹, respectively. The majority of translocation factors (TFs) for Cd (> 1.0) were higher than for Pb (≤ 1.0). However, concentrations of Cd and Pb in seeds were much lower, in the range of 0.04 to 0.21 mg kg⁻¹ and 0.04 to 0.51 mg kg⁻¹, respectively. The seed yields of oilseed rape varied from 1238 to 2904 kg ha⁻¹, with a mean value of 2289 kg ha⁻¹. Among the cultivars, three (OS-9, OS-12, and OS-15) were selected as Cd and Pb potential accumulators, with Cd accumulation in shoots being 2.74–3.70 times higher and Pb accumulation in shoots being 3.37–5.23 times higher as compared with the lowest accumulating cultivar. These selected cultivars (B. napus) have application potential for phytoextraction of Cd and Pb from polluted soils without stopping agricultural activities and accompanying food safety issues.
Mostrar más [+] Menos [-]Ketamine exerts neurotoxic effects on the offspring of pregnant rats via the Wnt/β-catenin pathway Texto completo
2020
Zhang, Xintong | Zhao, Jinghua | Chang, Tian | Wang, Qi | Liu, Wenhan | Gao, Li
Ketamine is an anesthetic and analgesic drug widely used in clinical anesthesia. To ensure the safety of anesthesia, it is necessary to study its side effects. Pregnancy is a key period for the development and growth of offspring. During this period, the proliferation and differentiation of brain cells and the synaptic formation are easily affected by external stimuli. Therefore, the aim of this study was to evaluate the effect of ketamine. Ketamine anesthesia was administered to rats in the second trimester of pregnancy, and two behavioral tests were performed, including contextual and cued fear conditioning test (CFC) and Morris water maze (MWM). At the end of the behavioral test, Nissl and Golgi staining were used to detect the dendrite density of hippocampal neurons to reveal the effect of maternal ketamine anesthesia on the hippocampus of offspring. Key proteins and their downstream transcription factors in Wnt/β-catenin signaling pathway from the embryonic development to the adulthood were studied. Our results showed that rats receiving maternal ketamine suffered from nerve injury. The density of hippocampal nerves and dendritic spine changed. Some genes related to Wnt/β-catenin pathway and Tcf/Lef were downregulated. In conclusion, maternal anesthesia with ketamine in the second trimester of pregnancy can lead to cognitive memory impairment and neurotoxicity in the hippocampus of offspring through Wnt/ β-catenin signaling pathway.
Mostrar más [+] Menos [-]Evaluation of possible molecular toxicity induced by occupational exposure to lead and concomitant effect of smoking Texto completo
2020
Fouad, Azza Ali | Foda, Nermine Tawfik | Diab, Iman Hassan | Badr El Dine, Fatma Mohamed Magdy | Balah, Manal Ibrahim Fathy
One of the most toxic heavy metals in the environment nowadays is lead (Pb). Even though exposure to lead has been reduced in some developed countries, individuals working in certain occupations are still exposed to lead at dangerous levels. Occupational exposure is of great concern and is also the main cause of lead poisoning. Although experts in various fields have been investigating the toxic effects of lead and its compounds for many years now, the association between chronic lead exposure and geno-toxicity is still an interesting point of research. The study aims to evaluate the possible DNA damage and the oxidative stress status induced by occupational exposure to lead and the role of concomitant smoking. The study was conducted on 60 subjects divided into two groups: an exposed group (40 male workers exposed to lead in their workplaces). This group was further divided into two subgroups; 20 workers were cigarette smokers and the other 20 workers were non-smokers. The other control group consists of 20 healthy males, not exposed to lead and matched by age to the exposed group (10 were smokers and the rest were non-smokers). Venous blood samples were collected from each participant for the determination of the following: blood lead level (BLL), plasma malondialdehyde (MDA) levels, and DNA damage using agarose gel electrophoresis. The exposed workers had significantly higher levels of lead and MDA, as well as a high frequency of DNA fragmentation. Smoking workers showed a greater frequency of DNA fragmentation than non-smokers. A significant relation was revealed between the BLL, as well as the MDA level, and the degree of DNA fragmentation among the lead-exposed workers. The study has shown additional evidence proving the association between Pb exposure and oxidative stress. The results further reinforced the role of cigarette smoking in augmenting such oxidative damage in the Pb-exposed population. However, further studies are recommended to evaluate the effect of cigarette smoking on Pb-exposed workers.
Mostrar más [+] Menos [-]Modification of acidic and textural properties of a sulphated zirconia catalyst for efficient conversion of high-density polyethylene into liquid fuel Texto completo
2020
Almustapha, Muhammad N. | Fārūq, Muḥammad | Mohammed, Misbahu L. | Farhan, Muhammad | Imran, Muhammad | Andresen, John M.
Consumption of plastic has a rapid increase of about 8% per annum and reached to 400 million per tonnes approximately, where about 50% of plastic was disposed after using only once. Different techniques for treating this increased waste faced a number of issues related to cost and environmental and sustainable development. Catalytic conversion has been found as one of the most viable solutions to solve this problem. Sulphated zirconia (SZ) catalyst modified with calcium carbide (CC) was found to improve high-density polyethylene (HDPE) conversion into liquid fuel. The liquid content was improved from 39.0wt% to 66.0wt% at 410 °C. HDPE was converted 100% by weight using, SZ/CC with 66wt% liquid yield as compared to the conversion of approximately 98wt% with about 40wt% only liquid yield for the pure SZ. The composition of hydrocarbon liquid product was significantly changed from paraffin (16%) and aromatic (58%) to olefin (74%) and naphthenic (23%) compounds. This significant increase in liquid was related to changes in the acidic and textural characteristics of the new hybrid catalyst, SZ/CC where the total ammonia desorption of 337.0 μm NH₃/g for the SZ was modified to 23.4 μm NH₃/g for the SZ/CC. Both SZ and SZ/CC catalysts showed characteristics of mesoporous material, where the internal pore volume of SZ had reduced from 0.21 mL/g for SZ to 0.04 mL/g for SZ/CC. Furthermore, XRD analysis indicated the presence of a new compound, CaZrO₃ in the SZ/CC, which confirmed a chemical interaction between the SZ and CC through sintering of ZrO₂ and CaO. Therefore, the SZ/CC catalyst improves the liquid yield significantly and the selectivity towards olefinic and naphthenic compounds.
Mostrar más [+] Menos [-]