Refinar búsqueda
Resultados 571-580 de 6,536
A new route for manufacturing poly(aminophosphonic)-functionalized poly(glycidyl methacrylate)-magnetic nanocomposite - Application to uranium sorption from ore leachate
2020
Galhoum, Ahmed A. | Eisa, Wael H. | El-Tantawy El-Sayed, Ibrahim | Tolba, Ahmad A. | Shalaby, Zeinab M. | Mohamady, Said I. | Muhammad, Sally S. | Hussien, Shimaa S. | Akashi, Takaya | Guibal, Eric
A high-energy ball milling of magnetite nanoparticles with amino-phosphonic functionalized poly(glycidyl methacrylate) polymer is used for manufacturing a highly efficient magnetic sorbent for U(VI) sorption from aqueous solutions. The Uranyl ions were adsorbed through the binding with amine and phosphonic groups as confirmed by Fourier Transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. The maximum sorption capacity (up to 270 mg U g⁻¹) occurred at pH = 3–4; Langmuir isotherm well describes the sorption process. Small-size particles allow achieving fast uptake (within ≈90 min of contact); and the kinetic profiles are modeled by the pseudo-second order rate equation. Uranium is successfully desorbed from loaded sorbent using 0.25 M NaHCO₃ solution: Sorbent can be recycled with minimal decrease in sorption and desorption efficiency for at least 6 cycles. The sorbent is efficiently used for U(VI) recovery from the acidic leachates of U-bearing ores (after precipitation pre-treatment). Sorption capacity approaches 190 mg U g⁻¹ despite the presence of high concentrations of Fe and Si: the sorbent has a marked preference for U(VI) (confirmed by distribution ratios and selectivity coefficients).
Mostrar más [+] Menos [-]Mechanochemical degradation of perfluorohexane sulfonate: Synergistic effect of ferrate(VI) and zero-valent iron
2020
Deng, Shanshan | Bao, Yixiang | Cagnetta, Giovanni | Huang, Jun | Yu, Gang
Perfluorohexane sulfonate (PFHxS) has been newly recommended to be added into the Stockholm Convention on persistent organic pollutants (POPs). As one of the major perfluoroalkyl pollutants, its long half-time in human serum and neurotoxicity are cause for significant concern. Although mechanochemical degradation has been evaluated as a promising ecofriendly technology to treat pollutants, the extraordinary stability of poly- and perfluoroalkyl substances (PFASs) raises harsh requirements for co-milling reagents. In the present study, zero-valent iron (ZVI) and ferrate(VI) were for the first time used as the co-milling reagents to degrade PFHxS. When ZVI and ferrate(VI) were used alone, both the degradation and defluorination efficiencies were low. However, after milling at the optimum ratio (ferrate(VI):ZVI = 1:2) for 4 h, the synergistic effect of ZVI and ferrate(VI) resulted in almost complete degradation (100%) and defluorination (95%). Two points can account for this excellent performance: (1) the mechanochemical energy input in the system initiates and prominently promotes related reactions; and (2) the active species generated from the reactions among ZVI, ferrate(VI) and other high-valent iron species will accelerate the process of electron transfer. The sulfonate group comprises the favorable attack sites, as corroborated by both the identified intermediates and quantum chemical calculations. The homolysis of the C–S bond is not only the triggering step, but also the rate-limiting step. In summary, the present work confirms the feasibility and underlying mechanism of the ZVI–ferrate(VI) co-milling system to defluorinate PFHxS, which might be a promising technology to treat PFASs in solid wastes.
Mostrar más [+] Menos [-]Citric acid-assisted accumulation of Ni and other metals by Odontarrhena muralis: Implications for phytoextraction and metal foliar distribution assessed by μ-SXRF
2020
do Nascimento, Clístenes Williams Araujo | Hesterberg, Dean | Tappero, Ryan | Nicholas, Sarah | da Silva, Fernando Bruno Vieira
Odontarrhena muralis is one of the most promissing plant species for Ni phytomining, and soil amendments can further increase its Ni phytoextraction ability. Here we investigated whether Ni phytomining/phytoremediation using this Ni hyperaccumulator can benefit from applying citric acid to a serpentine soil that is naturally enriched in Ni (>1000 mg kg⁻¹). Synchrotron micro X-ray fluorescence (μ-SXRF) was used to image Ni and other metal distributions in whole fresh leaves of O. muralis. Leaf Ni accumulation in plants grown on citric acid-amended soil increased up to 55% while Co, Cr, Fe, Mn, and Zn concentrations were 4-, 14-, 6-, 7- and 1.3-fold higher than the control treatment. O. muralis presented high bioconcentration factors (leaf to soil concentration ratio) to Ni and Zn whereas Cr was seemingly excluded from uptake. The μ-SXRF images showed a uniform distribution of Ni, preferential localization of Co in the leaf tip, and clear concentration of Mn in the base of trichomes. The citric acid treatments strongly increased the Co fluoerescence intensity in the leaf tip and altered the spatial distribution of Mn across the leaf, but there was no difference in Ni fluorescence counts between the trichome-base region and the bulk leaf. Our data from a serpentine soil suggests that citrate treatment enhances Ni uptake, but Co is excreted from leaves even in low leaf concentrations, which can make Co phytoming using O. muralis unfeasible in natural serpentine soils.
Mostrar más [+] Menos [-]Rapid vitrification of uranium-contaminated soil: Effect and mechanism
2020
Shu, Xiaoyan | Li, Yaping | Huang, Wenxiao | Chen, Shunzhang | Xu, Chen | Zhang, Shuai | Li, Bingsheng | Wang, Xiaoqiang | Qing, Qi | Lu, Xirui
Nuclear contaminated soil can seriously threaten human security. In this study, uranium-contaminated soil (0–50000 μg/g of uranium) was successfully vitrified in 30 min without complex pretreatment or any additional components. The microstructure of the vitrified forms, the immobilizing mechanism of uranium, the inner structural evolution with increased uranium concentration, and the performance in terms of chemical durability were studied in detail. In the vitrified form, uranium was surrounded by a three-dimensional network structure comprising silicon and aluminum oxide polyhedra. When the uranium content increased above 50000 μg/g, the network adjusted and local structures precipitated as mottle-shaped quartz. The normalized leaching rates of uranium were maintained at a low value (∼1 × 10⁻⁶ g/(m²·d) level) in distilled water at 90 °C after 42 days. These results suggested the feasibility of vitrifying nuclear contaminated soil in a simple and rapid way.
Mostrar más [+] Menos [-]Modulation of PAH toxicity on the freshwater organism G. roeseli by microparticles
2020
Bartonitz, Astrid | Anyanwu, Ihuoma N. | Geist, Juergen | Imhof, Hannes K. | Reichel, Julia | Graßmann, Johanna | Drewes, Joerg E. | Beggel, Sebastian
Polycyclic aromatic hydrocarbons are widespread and environmentally persistent chemicals that readily bind to particles in air, soil and sediment. Plastic particles, which are also an ubiquitous global contamination problem, may thus modulate their environmental fate and ecotoxicity. First, the acute aqueous toxicity of phenanthrene in adult Gammarus roeseli was determined with a LC₅₀ of 471 μg/L after 24 h and 441 μg/L after 48 h. Second, considering lethal and sublethal endpoints, effects of phenanthrene concentration on G. roeseli were assessed in relation to the presence of anthropogenic and natural particles. The exposure of gammarids in presence of either particle type with phenanthrene resulted after 24 and 48 h in reduced effect size. Particle exposure alone did not result in any effects. The observed reduction of phenanthrene toxicity by polyamide contradicts the discussion of microplastics acting as a vector or synergistically. Especially, no difference in modulation by plastic particles and naturally occurring sediment particles was measured. These findings can most likely be explained by the similar adsorption of phenanthrene to both particle types resulting in reduced bioavailability.
Mostrar más [+] Menos [-]Macro, colloidal and nanobiochar for oxytetracycline removal in synthetic hydrolyzed human urine
2020
Ramanayaka, Sammani | Manish Kumar, | Etampawala, Thusitha | Vithanage, Meththika
Macro (BC), colloidal (CBC) and nanobiochar (NBC) were examined for the particle size effect for adsorptive removal of oxytetracycline (OTC) and co-occurring nutrients, which are present in synthetic hydrolyzed human urine. The surface morphologies and functionality of biochars were characterized using Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) specific surface area and Fourier Transform Infra-Red (FTIR) Spectroscopy. Experiments for the removal of OTC were performed at the natural pH (pH 9.0) of hydrolyzed human urine using solid-solutions of 3 types of chars (1 g/L) with a contact time of 5 h, at initial OTC concentration of 50 mg/L where isotherm experiments were investigated with OTC concentrations from 25 to 1000 mg/L. The highest maximum adsorption capacity of 136.7 mg/g was reported for CBC, while BC reported slightly low value (129.34 mg/g). Interestingly, NBC demonstrated a two-step adsorption process with two adsorption capacities (16.9 and 113.2 mg/g). Colloidal biochar depicted the highest adsorption for NH₄⁺, PO₄³⁻, and SO₄²⁻ nutrients. All 3 types of chars showed strong retention with a poor desorption (6% in average) of OTC in synthetic hydrolyzed urine medium. CBC and NBC demonstrated both physisorption and chemisorption, whereas the OTC removal by BC was solely via physisorption. Nevertheless, CBC biochar demonstrated the best performance in adsorptive removal of OTC and nutrients in hydrolyzed human urine and its capability towards wastewater treatment. As the removal of nutrients were low, the treated urine can possibly be used as a safe fertilizer.
Mostrar más [+] Menos [-]Living near an active U.S. military base in Iraq is associated with significantly higher hair thorium and increased likelihood of congenital anomalies in infants and children
2020
Savabieasfahani, M. | Basher Ahamadani, F. | Mahdavi Damghani, A.
In Iraq, war contamination is the result of dispensed bombs, bullets, detonation of chemical and conventional weapons, and burn-pit emissions by US bases. Increases in congenital anomalies were reported from Iraqi cities post-2003. These cities were heavily bombed and encircled by US bases with burn-pits. Thorium is a radioactive compound and a direct depleted-uranium decay-product. Radioactive materials, including depleted uranium, are routinely stored in US bases and they have been shown to leak into the environment. We conducted a case-control study to investigate associations of residential proximity to Tallil Air Base, a US military base near Nasiriyah, as well as levels of uranium and thorium in hair and deciduous teeth with congenital anomalies. The study was based on a sample of 19 cases and 10 controls who were recruited during late Summer and early Fall of 2016. We developed mixed effects logistic regression models with village as the random effect, congenital anomaly as the outcome and distance to the US base and hair metal levels (one at a time) as the predictor variable, controlling for child's age, sex and paternal education. We also explored the mediation of the association between proximity to the base and congenital anomalies by hair metal levels. We found an inverse association between distance to Tallil Air Base and risk of congenital anomalies and hair levels of thorium and uranium. The results of our mediation analyses were less conclusive. Larger studies are necessary to understand the scope of war contamination and its impact on congenital anomalies in Iraq.
Mostrar más [+] Menos [-]Spatial distribution prediction of soil As in a large-scale arsenic slag contaminated site based on an integrated model and multi-source environmental data
2020
Liu, Geng | Zhou, Xin | Li, Qiang | Shi, Ying | Guo, Guanlin | Zhao, Long | Wang, Jie | Su, Yingqing | Zhang, Chao
Different prediction models have important effects on the accuracy of spatial distribution simulations of heavy metals in soil. This study proposes a model (RFOK) combining a random forest (RF) with ordinary kriging (OK), multi-source environmental data such as terrain elements, site environmental elements, and remote sensing data were incorporated to predict the spatial distribution of heavy arsenic (As) in soil of a certain large arsenic slag site. The predictions results of RFOK were compared with those obtained using the RF, OK, inverse distance weighted (IDW), and stepwise regression (STEPREG) models for assessment of prediction accuracy. The results showed that arsenic pollution was widely distributed and the center of the site, including arsenic slag stacking area and production area were seriously polluted. The overall spatial distribution of arsenic pollution simulated by the five models was similar, but the IDW, RF, OK, and STEPREG showed less spatial variation of soil pollution, while RFOK simulation can better express the characteristics of details in change. The cross-validation results showed that RFOK had the lowest root-mean-square error (RMSE), mean absolute error (MAE), and mean relative error (MRE) relative to the other four models, followed by RF, OK, IDW, and STEPREG. The RMSE, MAE and MRE of RFOK decreased by 62.2%, 64.3% and 68.7%, respectively, relative to the RF model with the second highest accuracy. Compared with the traditional spatial distribution prediction model, the RFOK model proposed in this study has excellent spatial distribution prediction ability for soil heavy metal pollution with large spatial variation characteristics, which can fully explain the nonlinear relationship between pollutant content and its environmental impact elements.
Mostrar más [+] Menos [-]Plutonium in Southern Yellow Sea sediments and its implications for the quantification of oceanic-derived mercury and zinc
2020
Wang, Jinlong | Du, Jinzhou | Zheng, Jian | Bi, Qianqian | Ke, Yu | Qu, Jianguo
The spatial distributions of mercury (Hg) and zinc (Zn) concentration and the isotopic composition of plutonium (Pu) were investigated in surface sediments and sediment cores collected from the Southern Yellow Sea (SYS) during May 2014. The variation of the ²⁴⁰Pu/²³⁹Pu atom ratio (0.18–0.31) in the surface sediments of the SYS clearly indicated a signal of close-in fallout input from the Pacific Proving Ground (PPG). The buried ²³⁹⁺²⁴⁰Pu in the sediment of the SYS was estimated to be (4.7 ± 0.5) × 10¹⁰ Bq y⁻¹ during the period from 2011 to 2014, of which ∼33% (1.5 × 10¹⁰ Bq y⁻¹) was derived from the PPG by long-range transport via ocean currents (e.g., the North Equatorial Current and Kuroshio Current). The concentrations of Hg and Zn varied from 0.003 to 0.067 mg kg⁻¹ and from 43.9 to 137 mg kg⁻¹, respectively, and exhibited positive correlations with the ²³⁹⁺²⁴⁰Pu activity both in the surface sediments (0–1 cm) and upper layers (7 cm) of the sediment cores. Therefore, by using Pu as a tracer, we estimated that the oceanic input contributed 2.0 tons y⁻¹ of Hg and 1.0 × 10³ tons y⁻¹ of Zn to the SYS sediments between 2011 and 2014, which accounted for 33% and 3% of total buried Hg and Zn, respectively. These findings indicate that environmental pollution control should also consider the oceanic contribution of some pollutants. The results of the present work help to elucidate the biogeochemical cycling of trace metals in marginal seas, and are helpful for managing environmental pollution in marine environments.
Mostrar más [+] Menos [-]A feasibility study of Indian fly ash-bentonite as an alternative adsorbent composite to sand-bentonite mixes in landfill liner
2020
Gupt, Chandra Bhanu | Bordoloi, Sanandam | Sekharan, Sreedeep | Sarmah, Ajit K.
Multi-layered engineered landfill consists of the bottom liner layer (mainly bentonite clay (B)) upon which the hazardous wastes are dumped. In current practice, sand (S) is mixed with bentonite to mitigate the adverse effects of using bentonite alone in the liner layer. Incorporation of waste and unutilized fly ash (FA) as an amendment material to B has been explored in terms of its hydro-mechanical properties, but not gauged its adsorption potential. Indian subcontinent primarily relies on the thermal power source, and FA dumps have already reached its full capacity. The objective of this study is to explore the adsorption characteristics of four B-FA composite mixes sourced within India, considering Pb²⁺ as a model contaminant. The effect of fly ash type, fly ash amendment rate and adsorbate concentration was explored in the current study and juxtaposed with B-S mixes, based on 960 batch adsorption tests. Both B-FA and B-S mixes reached equilibrium adsorption capacity within 65 min. At higher adsorbate concentrations (commonly observed in the liner), B-FA mixes exhibited superior adsorption capacity, mainly one mixed with Neyvelli fly ash (NFA). The effect of higher amendment rate had little impact on the adsorption capacity at different concentration, but gradually decreased the percentage removal of Pb²⁺. The B-S mix showed a drastic decrease in percentage removal at higher adsorbate concentration among all tested mixes. Systematic characterization including geotechnical properties, microstructure and chemical analysis was also done to interpret the obtained results. Both Freundlich and Langmuir models fitted the isotherm data well for all B-FA mixes. The maximum adsorption capacity from the isotherm was correlated to easily measurable Atterberg limits by two empirical relationships.
Mostrar más [+] Menos [-]