Refinar búsqueda
Resultados 581-590 de 7,214
A sequential utilization of the UV-A (365 nm) fluence rate for disinfection of water, contaminated with Legionella pneumophila and Legionelladumoffii
2022
Allahyari, Elaheh | Carraturo, Federica | De Risi, Arianna | Nappo, Antonio | Morelli, Michela | Cajora, Alessia | Guida, Marco
Legionella species are the etiological agent of Legionnaires' disease, a pathology easily contracted from water circuits and by the inhalation of aerosol droplets. This bacterium mainly proliferates in water: Legionella pneumophila is the most commonly isolated specie in water environments and consequently in water system, although further Legionella species have frequently been isolated, including Legionella dumoffii. The simultaneous presence of the two species in the water system can therefore lead to the simultaneous infection of several people, giving rise to harmful outbreaks. Ultraviolet inactivation of waterborne microorganisms offers a rapid and effective treatment technique and recently is getting more attention mostly to eliminate unsafe level of contamination. To tackle the issue, the inactivation of the two species of Legionella spp., namely L. pneumophila and L. dumoffii, by means of UV-A light emitting diodes (UV-A LED) system is explored. We used a commercially available UV-A LED at 365 nm wavelength, and the UV-A dose is given incrementally to the Legionellae with a concentration of 10⁶ CFU/mL in 0.9% NaCl (aq) solution. In this study, with a UV-A-dose of 1700 mJ/cm², the log-reduction of 3-log (99.9% inactivation) for L. pneumophila and 2.1-log (99.1% inactivation) for L. dumoffii of the contaminated water are achieved. The Electrical Energy per Order (EEO) is evaluated and showed this system is more economic and efficient in comparison with UV-C and UV-B LEDs. Following the support of this preliminary study with additional tests, aiming to validate the technology, we expect this device may be installed in water plants such as cooling systems or any water purification station in either industrial or home scales to reduce the risk of this infectious disease, preventing consumers' health.
Mostrar más [+] Menos [-]Investigation of water-soluble organic constituents and their spatio-temporal heterogeneity over the Tibetan Plateau
2022
Niu, Hewen | Lu, Xixi | Zhang, Guotao | Sarangi, Chandan
Investigating the migration and transformation of carbonaceous and nitrogenous matter in the cryosphere areas is crucial for understanding global biogeochemical cycle and earth's climate system. However, water-soluble organic constituents and their transformation in multiple water bodies are barely investigated. Water-soluble organic carbon (WSOC) and organic nitrogen (WSON), and particulate black carbon (PBC) in multiple types of water bodies in eastern Tibetan Plateau (TP) cryosphere for the first time have been systematically investigated. Statistical results exhibited that from south to north and from east to west of this region, WSOC concentrations in alpine river runoff were gradually elevated. WSOC and nitrogenous matter in the alpine river runoff and precipitation in the glacier region presented distinct seasonal variations. WSON was the dominant component (63.4%) of water-soluble total nitrogen in precipitation over high-altitude southeastern TP cryosphere. Water-soluble carbonaceous matter dominated the carbon cycle in the TP cryosphere, but particulate carbonaceous matter in the alpine river runoff had a small fraction of the cryospheric carbon cycle. Analysis of optical properties illustrated that PBC had a much stronger light absorption ability (MAC-PBC: 2.28 ± 0.37 m² g⁻¹) than WSOC in the alpine river runoff (0.41 ± 0.26 m² g⁻¹). Ionic composition was dominated by SO₄²⁻, NO₃⁻, and NH₄⁺ (average: 45.13 ± 3.75%) in the snow of glaciers, implying important contribution of (fossil fuel) combustion sources over this region. The results of this study have essential implications for understanding the carbon and nitrogen cycles in high altitude cryosphere regions of the world. Future work should be performed based on more robust in-situ observations and measurements from multiple environmental medium over the cryosphere areas, to ensure ecological protection and high-quality development of the high mountain Asia.
Mostrar más [+] Menos [-]Solidification/stabilization of soil heavy metals by alkaline industrial wastes: A critical review
2022
Jiang, Qi | He, Yongmei | Wu, Yonglin | Dian, Bo | Zhang, Jilai | Li, Tianguo | Jiang, Ming
Solidification/stabilization technology is one of the most desirable technologies for the remediation of heavy metal contaminated soils due to its convenience and effectiveness. The annual production of alkaline industrial wastes in China is in the hundreds of millions of tons. Alkaline industrial wastes have the potential to replace conventional stabilizers because of their cost effectiveness and performance in stabilizing heavy metals in soils. This paper systematically summarizes the use of four alkaline industrial wastes (soda residue, steel slag, carbide slag, and red mud) for the solidification/stabilization of heavy metal contaminated soils and provides a comprehensive analysis of the three mechanisms of action (hydration, precipitation, and adsorption) and factors that influence the process. In addition, the environmental risks associated with the use of alkaline industrial wastes are highlighted. We found that soda residues, steel slag and carbide slag are appropriate for solidification/stabilization of Pb, Cd, Zn and Cu, while red mud is a potential passivation agent for the stabilization of As in soils. However, implementation of remediation methods using alkaline industrial wastes has been limited because the long-term effectiveness, synergistic effects, and usage in soils containing multiple heavy metals have not been thoroughly studied. This review provides the latest knowledge on the mechanisms, risks, and challenges of using alkaline industrial wastes for solidification/stabilization of heavy metal contaminated soils.
Mostrar más [+] Menos [-]Exogenous hesperidin and chlorogenic acid alleviate oxidative damage induced by arsenic toxicity in Zea mays through regulating the water status, antioxidant capacity, redox balance and fatty acid composition
2022
Arikan, Busra | Ozfidan-Konakci, Ceyda | Yildiztugay, Evren | Zengin, Gokhan | Alp, Fatma Nur | Elbasan, Fevzi
Arsenic (As) toxicity is a problem that needs to be solved in terms of both human health and agricultural production in the vast majority of the world. The presence of As causes biomass loss by disrupting the balance of biochemical processes in plants and preventing growth/water absorption in the roots and accumulating in the edible parts of the plant and entering the food chain. A critical method of combating As toxicity is the use of biosafe, natural, bioactive compounds such as hesperidin (HP) or chlorogenic acid (CA). To this end, in this study, the physiological and biochemical effects of HP (100 μM) and CA (50 μM) were investigated in Zea mays under arsenate stress (100 μM). Relative water content, osmotic potential, photosynthesis-related parameters were suppressed under stress. It was determined that stress decreased the activities of the antioxidant system and increased the level of saturated fatty acids and, gene expression of PHT transporters involved in the uptake and translocation of arsenate. After being exposed to stress, HP and CA improved the capacity of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), glutathione S-transferase (GST) and glutathione peroxidase (GPX) and then ROS accumulation (H₂O₂) and lipid peroxidation (TBARS) were effectively removed. These phenolic compounds contributed to maintaining the cellular redox status by regulating enzyme/non-enzyme activity/contents involved in the AsA-GSH cycle. HP and CA reversed the adverse effects of excessive metal ion accumulation by re-regulated expression of the PHT1.1 and PHT1.3 genes in response to stress. Exogenously applied HP and CA effectively maintained membrane integrity by regulating saturated/unsaturated fatty acid content. However, the combined application of HP and CA did not show a synergistic protective activity against As stress and had a negative effect on the antioxidant capacity of maize leaves. As a result, HP and CA have great potentials to provide tolerance to maize under As stress by reducing oxidative injury and preserving the biochemical reactions of photosynthesis.
Mostrar más [+] Menos [-]Differential effects of biogenic and chemically synthesized silver-nanoparticles application on physiological traits, antioxidative status and californidine content in California poppy (Eschscholzia californica Cham)
2022
Hajian, Mohammad Hossein | Ghorbanpour, Mansour | Abtahi, Faezehossadat | Hadian, Javad
Silver nanoparticles (AgNPs) of both biologically and chemically origins trigger various physiological and metabolic processes through interaction with plant cells, exerting positive, negative and inconsequential effects. However, their impacts on plant systems must be critically investigated to guarantee their safe application in food chain. In this study, the effects of chemically synthesized (synthetic) AgNPs (sAgNPs) and biologically synthesized (biogenic) AgNPs (bAgNPs) on physiological and biochemical features of Eschscholzia californica Cham were evaluated at different concentrations (0, 10, 25, 50 and 100 mg L⁻¹). Plants exposed to bAgNPs (at 10 and 25 mg L⁻¹) and sAgNPs (at 10 mg L⁻¹) displayed relatively uniform deposition of AgNPs on leaf surface, however, the higher concentration (100 mg L⁻¹) was accompanied by aggregation of AgNPs, resulting in anatomical and physiological disorders. Foliar application of both AgNPs at lower concentrations resulted in significant (P < 0.01) improve in the content of photosynthetic pigments (chlorophylls a, b, a+b, and carotenoids) and total phenolics over the control in a dose-related manner. Leaf relative water content decreased steadily with increasing both sAgNPs and bAgNPs concentrations-with sAgNPs being more inhibitive. Both types of AgNPs at 100 mg L⁻¹ significantly (P < 0.05) increased electrolyte leakage index, level of lipid peroxidation product (malondialdehyde), and leaf soluble sugar content when compared to controls. No significant difference was found on cell membrane stability index among the plants exposed to bAgNPs and sAgNPs at the lowest concentration over the control. Californidine content was significantly (P < 0.01, by 45.1%) increased upon all the bAgNPs treatments (with a peak at 25 mg L⁻¹) relative to control. The obtained extracts from plants treated with bAgNPs at lower concentrations revealed a significant induction of antioxidant capacity (based on DPPH˙ free radical scavenging and ferrous ions-chelating activities) with lower IC₅₀ values compared to the other treatments. Conclusively, bAgNPs at lower concentrations are potent elicitors of pharmaceutically active compounds biosynthesis, which enhance physiological efficiency of E. californica, but at higher concentrations bAgNPs are equally toxic as sAgNPs.
Mostrar más [+] Menos [-]Factors determining the seasonal variation of ozone air quality in South Korea: Regional background versus domestic emission contributions
2022
Lee, Hyung-Min | Park, Rokjin J.
South Korea has experienced a rapid increase in ozone concentrations in surface air together with China for decades. Here we use a 3-D global chemical transport model, GEOS-Chem nested over East Asia (110 E - 140 E, 20 N–50 N) at 0.25° × 0.3125° resolution, to examine locally controllable (domestic anthropogenic) versus uncontrollable (background) contributions to ozone air quality at the national scale for 2016. We conducted model simulations for representative months of each season: January, April, July, and October for winter, spring, summer, and fall and performed extensive model evaluation by comparing simulated ozone with observations from satellite and surface networks. The model appears to reproduce observed spatial and temporal ozone variations, showing correlation coefficients (0.40–0.87) against each observation dataset. Seasonal mean ozone concentrations in the model are the highest in spring (39.3 ± 10.3 ppb), followed by summer (38.3 ± 14.4 ppb), fall (31.2 ± 9.8 ppb), and winter (24.5 ± 7.9 ppb), which is consistent with that of surface observations. Background ozone concentrations obtained from a sensitivity model simulation with no domestic anthropogenic emissions show a different seasonal variation in South Korea, showing the highest value in spring (46.9 ± 3.4 ppb) followed by fall (38.2 ± 3.7 ppb), winter (33.0 ± 1.9 ppb), and summer (32.1 ± 6.7 ppb). Except for summer, when the photochemical formation is dominant, the background ozone concentrations are higher than the seasonal ozone concentrations in the model, indicating that the domestic anthropogenic emissions play a role as ozone loss via NOₓ titration throughout the year. Ozone air quality in South Korea is determined mainly by year-round regional background contributions (peak in spring) with summertime domestic ozone formation by increased biogenic VOCs emissions with persistent NOₓ emissions throughout the year. The domestic NOₓ emissions reduce MDA8 ozone around large cities (Seoul and Busan) and hardly increase MDA8 in other regions in spring, but it increases MDA8 across the country in summer. Therefore, NOₓ reduction can be effective in control of MDA8 ozone in summer, but it can have rather countereffect in spring.
Mostrar más [+] Menos [-]Endophytic fungus Serendipita indica reduces arsenic mobilization from root to fruit in colonized tomato plant
2022
Shukla, Jagriti | Mohd, Shayan | Kushwaha, Aparna S. | Narayan, Shiv | Saxena, Prem N. | Bahadur, Lal | Mishra, Aradhana | Shirke, Pramod Arvind | Kumar, Manoj
The accumulation of arsenic in crop plants has become a worldwide concern that affects millions of people. The major source of arsenic in crop plants is irrigation water and soil. In this study, Serendipita indica, an endophytic fungus, was used to investigate the protection against arsenic and its accumulation in the tomato plant. We found that inoculation of S. indica recovers seed germination, plant growth and improves overall plant health under arsenic stress. A hyper-colonization of fungus in the plant root was observed under arsenic stress, which results in reduced oxidative stress via modulation of antioxidative enzymes, glutathione, and proline levels. Furthermore, fungal colonization restricts arsenic mobilization from root to shoot and fruit by accumulating it exclusively in the root. We observed that fungal colonization enhances the arsenic bioaccumulation factor 1.48 times in root and reduces the arsenic translocation factor by 2.96 times from root to shoot and 13.6 times from root to fruit compared to non colonized plants. Further, investigation suggests that S. indica can tolerate arsenic by immobilizing it on the cell wall and accumulating it in the vacuole. This study shows that S. indica may be helpful for the reduction of arsenic accumulation in crops grown in arsenic-contaminated agriculture fields.
Mostrar más [+] Menos [-]Interaction and spatio-taxonomic patterns of the soil microbiome around oil production wells impacted by petroleum hydrocarbons
2022
Geng, Pengxue | Ma, Anzhou | Wei, Xiaoxia | Chen, Xianke | Yin, Jun | Hu, Futang | Zhuang, Xuliang | Song, Maoyong | Zhuang, Guoqiang
Numerous onshore oil production wells currently exist, and the petroleum hydrocarbon contamination of the surrounding soil caused by oil production wells is not well understood. Moreover, the impact of the distribution of the total petroleum hydrocarbons (TPH) in the soil on the microbiota requires further investigation. Accordingly, in this study, the distribution of petroleum hydrocarbons in the soils around oil production wells was investigated, and their alteration of the microbiota was revealed. The results revealed that in the horizontal direction, the heavily TPH-contaminated soils were mainly distributed within a circle with a radius of 200 cm centered on the oil production well; and in the vertical direction, the heavily TPH-contaminated soils were distributed within the 0–50 cm soil layer. A significant positive correlation was found between the microbial abundance and the TPH concentration in the soil with relatively low total carbon contents. Heavy TPH contamination (TPH concentration of >3000 mg/kg) significantly reduced the microbial diversity and altered the microbiota compared with the light TPH contamination (TPH concentration of around 1000 mg/kg). In the heavily TPH-contaminated soils, the relative abundances of the Proteobacteria and Bacteroides increased significantly; the network complexity among the soil microorganisms decreased; and the co-occurrence patterns were altered. In summary, the results of this study have reference value in the remediation of soils around oil production wells and provide guidance for the construction of microbial remediation systems for petroleum contamination.
Mostrar más [+] Menos [-]Ethylene positively regulates Cd tolerance via reactive oxygen species scavenging and apoplastic transport barrier formation in rice
2022
Chen, Haifei | Zhang, Quan | Lv, Wei | Yu, Xiaoyi | Zhang, Zhenhua
Ethylene regulates plant root growth and resistance to environment stress. However, the role and mechanism of ethylene signaling in response to Cd stress in rice remains unclear. Here, we revealed that ethylene signaling plays a positive role in the resistance of rice to Cd toxicity. Blocking the ethylene signal facilitated root elongation under normal conditions, but resulted in severe oxidative damage and inhibition of root growth under Cd stress. Conversely, ethylene signal enhancement by EIN2 overexpression caused root bending, similar to the response of roots to Cd stress, and displayed higher Cd tolerance than the wildtype (WT) plants. Comparative transcriptome analysis indicated EIN2-mediated upregulation of genes involved in flavonoid biosynthesis and peroxidase activity under Cd stress. The synthesis of phenolic acids and flavonoids were positively regulated by ethylene. Thus, the ein2 (ethylene insensitive 2) mutants displayed lower ROS scavenging capacity than the WT. Moreover, a significant increase in Cd accumulation and relatively increased apoplastic flow were observed in the root apex of the ein2 mutant compared with the WT plants. Overall, EIN2-mediated Cd resistance in rice is mediated by the upregulation of flavonoid biosynthesis and peroxidase activity to induce ROS scavenging, and apoplastic transport barrier formation reduces Cd uptake.
Mostrar más [+] Menos [-]Concentration dynamics of polychlorinated biphenyls and organochlorine pesticides in blood of growing Grey heron (Ardea cinerea) chicks in the wild
2022
Valters, Karlis | Olsson, Anders | Vīksne, J. (Jānis) | Rubene, Liga | Bergman, Åke
Organochlorine contaminants (OCs) – organochlorine pesticides (OCPs) and industrial products and byproducts – are included in different monitoring programmes and surveys, involving various animal species. Fish-eating birds are suitable indicator species for OCs. Adult birds may be difficult to capture, but chicks can be sampled more easily. Blood of birds is a potentially suitable non-destructive matrix for analysis, as OC levels in blood reflect their concentrations in the body. The study was aimed at investigating how age of fast-growing Grey heron (Ardea cinerea) chicks affects contaminant levels in their blood and thus how important is sampling at exact age for biomonitoring purposes. In 1999 on Lake Engure in Latvia whole blood samples of heron chicks were collected at three different time points, with seven and nine days in between the first and second and second and third sampling points, respectively. Twenty-two chicks were sampled at all three times. In total, 102 samples were analysed for 19 polychlorinated biphenyl (PCB) congeners, DDT metabolites – DDE and DDD, hexachlorobenzene (HCB), α-, β-, γ-hexachlorocyclohexane (HCH), and trans-nonachlor. Total PCB concentrations averaged around 2000 ng/g dry extracted matter (EM). DDE was the dominant individual contaminant (ca. 800 ng/g EM), followed by CB-153, -138, and −118. Most of the other analysed OCs were below 100 ng/g EM. No significant (p > 0.05) differences in OC concentrations were found between the three sampling occasions, except for trans-nonachlor. This means that blood can safely be sampled for biomonitoring purposes during the 17 days’ time window. The analysed legacy contaminants may serve as model substances for other persistent organic pollutants.
Mostrar más [+] Menos [-]