Refinar búsqueda
Resultados 581-590 de 680
Analysis and Characterization of Municipal Solid Wastes Generated in Ifugao State University Potia Campus: A Basis For Planning of Waste Management Texto completo
2024
P. Latugan, J. J. Carabacan, G. Bonicillo, J. Cayog, M. Q. Eyawa, M. T. Cairel and J. M. Ngohayon
The end of the COVID-19 pandemic resulted in the total return of students and employees in Ifugao State University Potia Campus, a higher education institution located in Potia, Alfonso Lista, Ifugao, Philippines. However, the return of the pre-pandemic operations on campus caused problems in managing the generated municipal solid wastes. Hence, an analysis and characterization of the generated municipal solid wastes was conducted to determine important data that can be used for future waste management planning. The generated municipal solid wastes were gathered from the various waste generators within the campus for five consecutive days. The total generated municipal solid waste on the campus was about 140.10 kg.day-1, most of which was contributed by the canteens (20.86%). The generated municipal solid wastes were dominated by biodegradable waste (48.65%) and recyclable waste (37.26%). In addition, most of the generated municipal solid wastes were related to people’s food and beverage consumption behavior. The total volume of the MSW generated daily was about 5.647 m3. It is recommended that the campus create and enforce its waste management plan to specifically address the aforementioned characteristics of the generated municipal solid wastes.
Mostrar más [+] Menos [-]Growth and Immunity Performance of Nile Tilapia (Oreochromis niloticus) Challenged by Toxicity of Bio-Insecticide with Active Ingredients Eugenol and Azadirachtin Texto completo
2024
Ayi Yustiati, Alifia Ajmala Palsa, Titin Herawati, Roffi Grandiosa, Ibnu Bangkit Bioshina Suryadi and Ichsan Nurul Bari
This study aims to determine the maximum concentration and the long-term effects after exposure to a bio-insecticide with active ingredients eugenol and azadirachtin on the survival rate, immunity, and growth of Nile tilapia. The method used in this study was experimental, using a completely randomized design (CRD) with six treatments and three replications. Fishes were exposed to eugenol and azadirachtin at concentrations 10, 20, 30, 40, and 50% of LC50 value for 14 days, followed by 14 days of maintenance to see the effect on growth. The results showed that 66 mg.L-1 treatment was a concentration that did not interfere with the survival rate of Nile tilapia, which was 86.7%. The number of leukocytes increased on the third day by the highest increase in 66 mg.L-1 treatment at 12.01 × 104 cells.mm-3. Meanwhile, erythrocytes decreased, with the highest decrease in 66 mg.L-1 treatment at 1.13 × 106 cells.mm-3. The average growth rate in fish slowed down with increasing concentrations of exposure, with the lowest average growth in length and absolute weight in the 66 mg.L-1 treatment was 0.57 cm and 1.68 g.
Mostrar más [+] Menos [-]Effects of Glyphosate on the Environment and Human Health Texto completo
2024
L. A. García-Villanueva, V. H. Cuapio-Ortega, I. Y. Henández-Paniagua, G. Fernández-Villagómez, J. Rodrigo-Ilarri, M. E. Rodrigo-Clavero, G. L. Andraca-Ayala, G.B. Hernández-Cruz and S. Banda-Santamaría
Glyphosate is a herbicide of a wide spectrum that alters the production of amino acids in plants, leading to their death. Due to its properties, it is used to eliminate weeds that interfere with human activity. The intensive use of this herbicide in the past decades has led to its frequent encounter in the environment as it has been detected in water, animals, and food destined for human consumption. Its impact on human health and the rest of living organisms has not been fully explored, given that many authors enter into contradictions with one another, specifically surrounding the role of surfactants in the commercial presentation of herbicides. The use of pesticides can have significant impacts on ecosystems, threatening bio-cultural diversity due to genetic contamination from transgenic crops. The effectiveness of Glyphosate-based herbicides in weed control is diminishing due to weed tolerance. However, the use of herbicides remains prevalent in large-scale crops due to the challenges of organic food production. In addition, the probable conflict of interest by the agrochemical industry does not bring a full picture with respect to the actions that world governments should take. Banning GLP-based herbicides may lead to the use of other pesticides, in which the long-term impacts will require further studies. The motivation for this research is the review of the latest advances of glyphosate in the world, considering the use and prohibitions of this herbicide, its interaction with water and soil, as well as the effects on both the environment and health. The search for information for this paper was carried out in the Mendeley, Elsevier, and Springer databases by filtering by the suitable keywords.
Mostrar más [+] Menos [-]Isolation of Freshwater Algae from Some Reservoirs of Chiang Mai Rajabhat University, Mae Rim Campus, Chiang Mai Texto completo
2024
Pongpan Leelahakriengkrai, Phitsanuphakhin Chaimongkhon and Tatporn Kunpradid
A study on the biodiversity and isolation of freshwater algae from some reservoirs of Mae Rim Campus, Chiang Mai Rajabhat University, Chiang Mai Province, collected algal samples and assessed the water quality at four reservoirs, including Wiang Bua Reservoir, Ma Lang Por Reservoir, Education Auditorium reservoir, and Kru Noi Garden Reservoir. One hundred and six species of algae belonging to 8 phyla were found. The most prominent species were Cylindrospermopsis philippinensis, Trachelomonas volvocina, Peridiniopsis sp., and Coelastrum astroideum, respectively. The overall water quality was categorized as clean according to some physical and chemical parameters by the National Environmental Board of Thailand. However, high BOD values were detected at some sampling points. The algae isolation included 8 isolates, which could be utilized for various purposes in the future, such as biomass, protein, polysaccharide energy, bioactive compounds, antioxidant substances, wastewater treatment, environmental indicators, algal toxins, and phylogenetic studies. All strains were stored at the Centre of Excellence of Biodiversity Research and Implementation for Community, Chiang Mai Rajabhat University, for conservation and future development purposes.
Mostrar más [+] Menos [-]Identification and Functional Annotation of Echium plantagineum Metallothioneins for Reduction in Heavy Metals in Soil Using Molecular Docking Texto completo
2024
Y. S. Rasheed, M. S. AL-Janaby and M. H. Abbas
Heavy metal contamination in soil poses a significant environmental challenge globally, affecting agricultural productivity and human health. Phytoremediation, using plants to extract and detoxify heavy metals, presents a promising solution. This study investigates the novel potential of Echium plantagineum, a metal-tolerant species, in phytostabilization and phytoremediation and explores the role of metallothioneins in heavy metal reduction. A comprehensive literature review identified known metallothioneins involved in heavy metal reduction across various plant species. Moreover, genome annotation and gene prediction of Echium plantagineum were performed, predicting a total of 39,520 proteins. This comprehensive protein list facilitates the identification of metallothioneins or other metal-related proteins with potential functional roles in heavy metal tolerance, suggesting new targets to improve the effectiveness of phytoremediation. The sequences of these proteins were utilized to construct a protein BLAST database, against which known metallothioneins protein sequences from other plant species were subjected to BLAST searches, resulting in 41 top hits. Subsequent 3D modeling, structural analysis, protein-metal virtual screening, and functional annotation of the proteins revealed novel high affinities of Ctr copper transporter, zinc/iron permease, and nicotianamine synthase proteins with nickel, zinc, and zinc ion, suggesting their unexplored roles in the uptake of aforementioned ligands. Notably, this study identifies novel metallothioneins proteins in Echium plantagineum, highlighting their role in metal tolerance and phytoremediation.
Mostrar más [+] Menos [-]GIS-Based Assessment of Soil Erosion Using the Revised Universal Soil Loss Equation (RUSLE) Model in Morigaon District, Assam, India Texto completo
2024
Ananya Saikia, Monjit Borthakur and Bikash Jyoti Gautam
Soil erosion in the agricultural landscape of Assam has been impacting the livelihoods of millions. In administrative regions like districts, which are vulnerable to natural disasters like floods and bank erosion, GIS-based soil erosion estimating studies can help planners and policymakers identify areas of soil erosion to implement scientific conservation measures. The main purpose of this study is to estimate soil loss and to determine soil loss zones in the Morigaon district of Assam. The Revised Universal Soil Loss Equation (RUSLE) combined with GIS has been incorporated into the present study. The five parameters of RUSLE, namely, rainfall-runoff erosivity, soil erodibility, topographic factor, cover management, and conservation practices, are individually estimated from relevant and authentic data sources, and all these parameters are quantified in GIS. The research findings show that 46.89% of areas in the district are in moderate soil loss zone, eroding 0.78 ton/ha/year, 34.27% of areas are in low soil loss zone, 15.36% of areas are in high soil loss zone, eroding about 12.22 ton/ha/year and 3.47% of areas are in a very high soil loss zone, eroding 192.8 ton/ha/year. The high soil loss zones mainly cover the riverine areas and bare lands in the district. As per our estimation, there is an average of 205.85 tonnes of soil loss in the district per hectare per year.
Mostrar más [+] Menos [-]Environmental Impact of Al-Dalmaj Marsh Discharge Canal on the Main Outfall Drain River in the Eastern part of Al-Qadisiya City and Predicting the IQ-WQI with Sensitivity Analysis Using BLR Texto completo
2024
Zahraa Z. Al-Janabi, Idrees A. A. Al-Bahathy, Jinan S. Al-Hassany, Rana R. Al-Ani, Ahmed Samir Naje and Afrah A. Maktoof
Monitoring water quality changes in any body of water is crucial as it directly relates to climate change. Evaluating the quality and quantity of fresh water for various uses is essential to maintaining safe water sources now and in the future. This study examined the water quality of the Main Outfall Drain River (MOD) in the eastern part of Al-Qadisiya Governorate at three sites over four seasons in 2023, using the Iraqi Water Quality Index (IQ-WQI). In most cases, the concentrations of dissolved oxygen (DO), biochemical oxygen demand (BOD5), and total dissolved solids (TDS) exceeded allowable limits for freshwater and aquatic life protection. The major contributing parameters to the river’s low water quality were TDS, BOD5, turbidity, and DO. The use of the MOD for discharging agricultural effluents led to increased levels of TDS, BOD5, and turbidity. Temporal variation indicated that the summer season had the highest values compared to other seasons due to increased evaporation and low water discharge. Spatial variation showed the IQ-WQI of the sites in descending order from very poor water to unsuitable, with Site 3 having double the TDS concentrations compared to other sites. This increase may be attributed to the impact of the Al-Dalmag Marsh discharge canal, which comes into contact with the MOD at this site. Sensitivity analysis using backward linear regression was applied to predict the IQ-WQI and determine the most influential parameters on the IQ-WQI score. The test was conducted for two sets of water parameters (from the IQ-WQI calculation) and included 7 parameters for each freshwater and aquatic life use, obtaining different models.
Mostrar más [+] Menos [-]Phenopalynological Study of Some Ornamental Species in the Giza Region, Egypt Texto completo
2024
W. K. Taia, W. M. Amer, A. B. Hamed and A. M. Abd El-Maged
Mature flower buds were collected from twenty species planted on the different roads in the Giza district from May to September 2022 and 2023. The pollen grains were examined carefully and photographed using a 40x10x magnification lens in an OPTICA (B-150D) light microscope fitted with a USB digital video Camera and Computer Software. At least 30 pollen grains/each species were measured and described. Non-catalyzed pollens were sputtered onto Aluminum stubs, coated with 30 nm gold, and examined and photographed using JEOL JSL IT 200 SEM. The morphological characters of the pollen grains were examined. According to the pollen size Acalypha wilkesiana and Tecoma stans were the smallest pollen grains, from 20.0μm to 26.0μm, which facilitate their introduction to the nose causing asthma and rhinitis. Clerodendrum inerme pollen grains have echinate exine surface, which causes allergic symptoms more than the psilate ones. Plumbago capensis has intectate exine with echinate columella causing human disorders. This study demonstrates the critical position of air pollution in this area with the change in the phenological aspects of the plants resulting in producing immature pollen grains in huge amounts, which cause human disorders and pollinosis. Our results showed that the studied species can induce allergy in one way or another if we consider the situation of the studied area, weather pattern, and pollen characteristics.
Mostrar más [+] Menos [-]Mechanism and Behavior of Phosphorus Adsorption from Water by Biochar Forms Derived from Macadamia Husks Texto completo
2024
Nguyen Van Phuong
High phosphate content in water causes eutrophication, leading to many risks to the aquatic environment and human health. This study used biochar derived from macadamia husks at the pyrolysis temperatures (300, 450, and 600℃) to remove P from water. Adsorption parameters such as initial pH, biochar dosage, initial P concentration, and adsorption time when biochar was exposed to the P solution were determined. The results show that pH 4 is optimal for P removal with biochar pyrolyzed at 300 and 450°C, while pH 6 gives biochar 600°C, biochar dosage 10 g.L−1, concentration Initial P 25-200 mg.L−1 and adsorption time 40 minutes for 3 types of biochar. The maximum P adsorption capacity is 20.07, 20.03, and 20.03 mg.L−1 corresponding to 3 forms of biochar 300, 450, and 600°C. P adsorption data were consistent with the Freundlich isotherm model for all three biochar forms. The pseudo-second-order kinetic model was suitable for all three types of biochar, showing that the main adsorption mechanism is a surface chemical reaction. The study suggested that hydrogen bonding plays an important role in the adsorption of P onto biochar derived from macadamia husks. This study indicates that biochar derived from macadamia husks pyrolyzed at temperatures of 300, 450, and 600°C are all potentially effective and low-cost adsorbents for phosphate removal from water.
Mostrar más [+] Menos [-]Phytochemistry of Aloe vera: A Catalyst for Environment-Friendly Diverse Nanoparticles with Sustained Biomedical Benefits Texto completo
2024
S. Yadav, A. Khan and J. G. Sharma
Nanotechnology has become one of the most active fields in the research area and is getting more attention toward nanoparticle synthesis. Green synthesis methods using various plants, fungi, bacteria, and algae were used to synthesize nanoparticles with proper requirements and maintain sterile conditions to get the desired products. Aloe vera, a bio-medicinal plant, contains a wide range of phytochemicals such as phenolic, hydroxyl groups, alkaloids, polyols, polysaccharides, etc, which act as reducing and capping agents with high efficiency. This review revealed that aloe vera-derived nanoparticles are safe, stable, cost-effective, and eco-friendly, and they also possess significant applications for drug targeting, disease resistance, tissue engineering, wound healing, anticancer, antibacterial, and cosmetic industries. Synthesized metal nanoparticles are characterized through UV-visible spectroscopy, X-ray diffraction, scanning electron and transmission electron microscopy, photoluminescence, and the Well-diffusion method. It is highly interesting to note that aloe vera-mediated silver and zinc nanoparticles possess high potency against multi-drug resistant pathogens. Here, anticancer, antioxidant, anti-inflammatory, and photocatalytic activity separately showed by aloe vera peel, gel, and leaf, along with possible challenging situations faced during plant extract-based nanoparticle synthesis, are highlighted. Additionally, the introduction of GMOs is subjected to play an important role in advancing green methods. However, more research is required to estimate the dose’s safety, degradation, and synergistic mechanism inside the human body for better use of the green method for the treatment of microbial infections.
Mostrar más [+] Menos [-]