Refinar búsqueda
Resultados 601-610 de 6,536
Effects of microplastics on growth, phenanthrene stress, and lipid accumulation in a diatom, Phaeodactylum tricornutum
2020
Guo, Yahong | Ma, Wei | Li, Jiji | Liu, Wei | Qi, Pengzhi | Ye, Yingying | Guo, Baoying | Zhang, Jianshe | Qu, Chengkai
Most laboratory studies have focused on the effects of nanoplastics instead of plastics at the micrometer scale, which are the major microplastics (MPs) discarded in marine environments. Knowledge on the potential effects of micrometer scale plastics on marine microalgae remains limited. It remains unknown whether the micrometer scale plastics also affect microalgal growth, lipid accumulation and resistance to organic contaminants? In addition, the role of polymer-size on the potential hazardous effects of MPs on microalgae is unknown. In the present study, cell populations of a marine diatom, Phaeodactylum tricornutum, were treated with micrometer scale polyethylene (PEMP, 150 μm) and unplasticized polyvinyl chloride (uPVCMP, 250 μm) powders in the laboratory. Growth was assessed using a hemacytometer and neutral lipid concentrations were evaluated using the Nile Red staining method under short-term (four days) and long-term (nine days) exposure. The effects of combined PEMP and phenanthrene (Phe), and uPVCMP and Phe exposures over four days on growth were investigated. Importance scores and SHapley Additive exPlanations (SHAP) values were calculated to assess the contributions of seven factors in exposure systems to the hazardous effects of MPs on microalgae using a machine-learning prediction based on 165 data sets. Both MP types did not influence algal growth and lipid accumulation but minimized algal inhibition by the action of Phe at four days. In addition, lipid accumulation was induced at nine days. Both importance scores and SHAP values indicated that MP polymer-size was the key factor influencing MP toxicity in microalgae. In conclusion, MPs had adverse effects only in chronic tests and the potential adsorption of MPs could have led to the lower levels of toxicity in a combined MP–Phe exposure system. Compared to nanoplastics, MPs in the hundred-micrometer range do not significantly affect growth and their adsorption would not be influenced by size. Therefore, MP size is the most critical factor that should be considered in future laboratory tests and eco-toxicological risk assessments for microalgae.
Mostrar más [+] Menos [-]Treatment of biodigested coffee processing wastewater using Fenton’s oxidation and coagulation/flocculation
2020
Gomes de Barros, Valciney | Rodrigues, Carmen S.D. | Botello-Suárez, Wilmar Alirio | Duda, Rose Maria | Alves de Oliveira, Roberto | da Silva, Eliana S. | Faria, Joaquim L. | Boaventura, Rui A.R. | Madeira, Luis M.
Biodigested coffee processing wastewater (CPW) presents a high organic load and does not meet the limits imposed by legislation (namely in Brazil) for discharge into water bodies. Anaerobic digestion generally cannot provide a satisfactory organic matter reduction in CPW as a significant fraction of recalcitrant compounds still persists in the treated effluent. So, this study aims to find alternative ways to remove refractory organic compounds from this wastewater in order to improve the biodegradability and reduce the toxicity, which will allow its recirculation back into the anaerobic digester. Three treatment approaches (Fenton’s oxidation - Approach 1, Coagulation/flocculation (C/F) - Approach 2, and the combination of C/F with Fenton’s process - Approach 3) were selected to be applied to the biodigested CPW in order to achieve that objective.The application of the Fenton process under the optimal operating conditions (initial pH = 5.0; T = 55 °C, [Fe³⁺] = 1.8 g L⁻¹ and [H₂O₂] = 9.0 g L⁻¹) increased the biodegradability (the BOD₅:COD ratio raised from 0.34 ± 0.02 in biodigested CPW to 0.44 ± 0.01 after treatment) and eliminated the toxicity (0.0% of Vibrio fischeri inhibition) along with moderate removals of organic matter (51.3%, 55.7% and 39.7% for total organic carbon – TOC, chemical oxygen demand – COD and biochemical oxygen demand - BOD₅, respectively). The implementation of a coagulation/flocculation process upstream from Fenton’s oxidation, under the best operating conditions (pH 10–11 and [Fe³⁺] = 250 mg L⁻¹), also allowed to slightly increase the biodegradability (from 0.34 to 0.47) and reduce the toxicity, whereas providing a higher removal of organic matter (TOC = 76.2%, COD = 76.5 and BOD₅ = 66.3% for both processes together). Approach 1 and Approach 3 showed to be the best ones, implying similar operating costs (∼74 R$ m⁻³/∼17 € m⁻³) and constitute an attractive option for managing biodigested CPW.
Mostrar más [+] Menos [-]Nutrients release and greenhouse gas emission during decomposition of Myriophyllum aquaticum in a sediment-water system
2020
Luo, Pei | Tong, Xiong | Liu, Feng | Huang, Min | Xu, Juan | Xiao, Runlin | Wu, Jinshui
Aquatic macrophytes play a significant role in nutrients removal in constructed wetlands, yet nutrients could be re-released due to plant debris decomposition. In this study, Myriophyllum aquaticum was used as a model plant debris and three debris biomass levels of 3 g, 9 g dry biomass, and 20 g fresh biomass (D3, D9, and F20, respectively) were used to simulate 120-d plant debris decomposition in a sediment-water system. The biomass first-order decomposition rate constants of D3, D9, and F20 treatments were 0.0058, 0.0117, and 0.0201 d⁻¹, respectively with no significant difference of decomposition rate among three mass groups (p > 0.05). Plant debris decomposition decreased nitrate and total nitrogen concentrations but increased ammonium, organic nitrogen, and dissolved organic carbon (DOC) concentrations in overlying water. The parallel factor analysis confirms that three components of DOC in overlying water changed over decomposition time. Emission fluxes of methane and nitrous oxide in the plant debris treatments were several to thousands of times higher than the control group within the initial 0–45 d, which was mainly attributed to DOC released from the plant debris. Plant debris decomposition can affect the gas emission fluxes for relatively shorter time (30–60 d) than water quality (>120 d). The 16S rRNA, nirK, nirS and hazA gene abundance increased in the early stage for plant debris treatments, and then decreased to the end of 120-d incubation time while ammonia monooxygenase α-subunit A gene abundance of ammonia-oxidizing archaea and bacteria had no large variations during the entire decay time compared with no plant debris treatment. The results demonstrate that decomposition of M. aquaticum debris could affect greenhouse gas emission fluxes and microbial gene abundance in the sediment-water system besides overlying water quality.
Mostrar más [+] Menos [-]Exposure of polychlorinated naphthalenes (PCNs) to Pakistani populations via non-dietary sources from neglected e-waste hubs: A problem of high health concern
2020
Waheed, Sidra | Khan, Muhammad Usman | Sweetman, A. J. (Andrew J.) | Jones, K. C. (Kevin C.) | Moon, Hyo-Bang | Malik, Riffat Naseem
To date limited information’s are available concerning unintentional productions, screening, profiling, and health risks of polychlorinated naphthalenes (PCNs) in ambient environment and occupational environment. Literature reveals that dust is a neglected environmental matrix never measured for PCNs. To our knowledge, this is the first study to investigate the concentrations and health risks of PCNs in indoor dust, air, and blood of major e-waste recycling hubs in Pakistan. Indoor air (n = 125), dust (n = 250), and serum (n = 250) samples were collected from five major e-waste hubs and their vicinity to measure 39 PCN congeners using GC-ECNI-MS. ∑₃₉PCN concentrations in indoor air, dust, and serum (worker > resident > children) samples ranged from 7.0 to 9583 pg/m³, from 0.25 to 697 ng/g, and from 0.15 to 401 pg/g lipid weight, respectively. Predominant PCN congeners in indoor air and dust were tri- and tetra-CNs, while tetra- and penta-CNs were dominant in human serum samples. The higher PCNs contribution was recorded at the recycling units, while the lower was observed at the shops of the major e-waste hubs. Higher contribution of combustion origin CNs in air, dust and human samples showed combustion sources at the major e-waste hubs, while Halowax and Aroclor based technical mixture showed minor contribution in these samples. Mean toxic equivalent (TEQ) concentrations of PCNs were 2.79E⁺⁰⁰ pg-TEQ/m³, 1.60E⁻⁰² ng-TEQ/g, 8.11E⁻⁰¹ pg-TEQ/g, 7.14E⁻⁰¹ pg-TEQ/g, and 6.37E⁻⁰¹ pg-TEQ/g for indoor air, dust, and serum samples from workers, residents, and children, respectively. In our study, CNs- 66/67 and −73 in indoor air, dust, and human serum were the great contributors to total TEQ concentrations of PCNs. This first base line data directs government and agencies to implement rules, regulation to avoid negative health outcomes and suggests further awareness in regard of provision of proper knowledge to the target population.
Mostrar más [+] Menos [-]Ecological risk of human health in sediments in a karstic river basin with high longevity population
2020
Deng, Qucheng | Wei, Yongping | Yin, Juan | Chen, Lijuan | Peng, Chong | Wang, Xiaofei | Zhu, Kaixian
Health and longevity are common human goals, and environmental factors can have significant impacts on human health. This study aims to investigate the historical changes and sources of trace elements in the sediments of a typical karstic river basin with high longevity population in Hechi City, Guangxi, China and to evaluate the ecological risks of trace elements in sediments. The results showed that over the past 100 years, the contents of trace elements in the sediments were lower in the upper reaches than in the middle and lower reaches of the river. The sediments had high trace element contents in 1950–1959 and 1989–1998, while low contents appeared after 1998. These periods correspond to China’s industrial growth in the early 1950s, the Great Leap Forward movement in the late 1950s, the reform and opening-up policy implemented in the 1980s–1990s and the environmental protection policies to strengthen pollution control that have been implemented since 2000. Limestone soil and carbonate rock are the main sources of sediment in the basin. Although the geological background values of Cd and other trace elements in the basin were relatively high, the high calcium content and alkalinity of the water and sediment in the basin reduced the bioavailability of Cd and other heavy metals. The mainstream of Panyang River had a low environmental risk, but the tributary Bama River where there is dense population poses a moderate risk.
Mostrar más [+] Menos [-]Leaching behaviors and speciation of cadmium from river sediment dewatered using contrasting conditioning
2020
Li, Tian | Shi, Yafei | Li, Xiaoran | Zhang, Huiqin | Pi, Kewu | Gerson, Andrea R. | Liu, Defu
Chemical conditioning is an effective strategy for improved river sediment dewatering affecting both the dewatering efficiency and subsequent resource utilization of the dewatered cake. Two types of conditioning agents, polyaluminium chloride (PAC)/cationic polyacrylamide (PAM) (coagulation precipitation conditioning agent, referred to as P–P conditioning) and ferrous activated sodium persulfate (advanced oxidation conditioning agent, referred to as F–S conditioning) were examined. With increasing leach liquid to solid (L/S) ratio the concentration of Cd for the real time leachates from the dewatered cakes decreased, but the leaching ratio of Cd in both P–P and F–S dewatered cakes increased. With the same L/S, the leaching ratio was reduced for both types of conditioning, as compared to no conditioning, with the leaching ratio being least with F–S conditioning. The leaching ratio of Cd in the dewatered cake with L/S of 100 L kg⁻¹ was reduced from 21.3% of the total Cd present for the un-conditioned sediment to 12.5% upon P–P conditioning and 11.6% upon F–S conditioning. Furthermore, the different conditioning methods affected the Cd speciation in the dewatered cakes reducing the easy-to-leach speciation of exchangeable and carbonate-bound Cd species and increasing the potential-to-leach speciation of iron-manganese oxide and organically bound Cd species and also the difficult-to-leach species. Risk assessment indicates that the risk due to Cd leaching from the dewatered cakes at L/S of 100 L kg⁻¹ was reduced from high risk to medium risk after P–P and F–S conditioning with reduced bioavailability.
Mostrar más [+] Menos [-]Determination and uptake of abamectin and difenoconazole in the stingless bee Melipona scutellaris Latreille, 1811 via oral and topic acute exposure
2020
Prado, Fernanda Scavassa Ribeiro do | dos Santos, Dayana Moscardi | de Almeida Oliveira, Thiessa Maramaldo | Micheletti Burgarelli, José Augusto | Castele, Janete Brigante | Vieira, Eny Maria
Bees are considered as important providers of ecosystem services, acting via pollination process in crops and native plants, and contributing significantly to the maintenance of biodiversity. However, the decrease of bee's population has been observed worldwide and besides other factors, this collapse is also related to the extensive use of pesticides. In this sense, studies involving the assessment of adverse effects and the uptake of pesticides by bees are of great concern. This work presents an analytical method for the determination of the insecticide abamectin and the fungicide difenoconazole in the stingless bee Melipona scutellaris exposed via oral and topic to endpoints concentrations of active ingredients (a.i.) alone and in commercial formulations and the discussion about its mortality and uptake. For this purpose, QuEChERS (Quick, Easy, Cheap, Efficient, Rugged and Safe) acetate modified method was used for extraction and pesticides were determined by LC-MS/MS. The validation parameters have included: a linear range between 0.01 and 1.00 μg mL⁻¹; and LOD and LOQ of 0.038 and 0.076 μg g⁻¹ for abamectin and difenoconazole, respectively. The uptake of tested pesticides via oral and topic was verified by the accumulation in adult forager bees, mainly when the commercial product was tested. Mortality was observed to be higher in oral exposure than in topic tests for both pesticides. For abamectin in a commercial formulation (a.i.) no differences were observed for oral or topic exposure. On the other hand, for difenoconazole, topic exposure had demonstrated higher accumulation in bees, according to the increase of received dose. Through the results, uptake and the possible consequences of bioaccumulated pesticides are also discussed and can contribute to the knowledge about the risks involving the exposure of bees to these compounds.
Mostrar más [+] Menos [-]Mosquito larvae that survive a heat spike are less sensitive to subsequent exposure to the pesticide chlorpyrifos
2020
Meng, Shandong | Delnat, Vienna | Stoks, Robby
While extreme high temperatures are an important aspect of global warming, their effects on organisms are relatively understudied, especially in ecotoxicology. Sequential exposure to heat spikes and pesticides is a realistic scenario as both are typically transient stressors and are expected to further increase in frequency under global warming. We tested the effects of exposure to a lethal heat spike and subsequently to an ecologically relevant lethal pulse exposure of the pesticide chlorpyrifos in the larvae of mosquito Culex pipiens. The heat spike caused direct and delayed mortality, and resulted in a higher heat tolerance and activity of acetylcholinesterase, and a lower fat content in the survivors. The chlorpyrifos exposure caused mortality, accelerated growth rate, and decreased the heat tolerance and the activity of acetylcholinesterase. The preceding heat spike did not change how chlorpyrifos reduced the heat tolerance. Notably, the preceding heat spike did lower the lethal effect of the pesticide, which makes an important novel finding at the interface of ecotoxicology and global change biology, and adds a new dimension to the “climate-induced toxicant sensitivity” (CITS) concept. This may be due to both survival selection and cross-tolerance, and therefore likely a widespread phenomenon. Our results emphasize the importance of including extreme high temperatures as an important transient global change stressor in ecotoxicology.
Mostrar más [+] Menos [-]The factors associated with distress following exposure to smoke from an extended coal mine fire
2020
Broder, Jonathan C. | Gao, Caroline X. | Campbell, Timothy C.H. | Berger, Emily | Maybery, Darryl | M'Farlane, Alexander | Tsoutsoulis, Jessica | Ikin, Jillian | Abramson, Michael J. | Sim, Malcolm R. | Walker, Judi | Luhar, Ashok | Carroll, Matthew
In February 2014, the coalmine adjacent to the Hazelwood Power Station in the Latrobe Valley of Victoria, Australia, caught fire, with residents from the nearby town of Morwell and the wider area exposed to smoke for six weeks. Although there was evidence linking the mine-fire event with psychological distress, no studies have evaluated the degree of distress in relation to the level of smoke exposure. We aimed to investigate the exposure-response relationship between particulate matter 2.5 μm or less in diameter (PM₂.₅) released during the Hazelwood mine fire event and long-term symptoms of posttraumatic distress in the affected community, including the consideration of other key factors. A total of 3096 Morwell residents, and 960 residents from the largely unexposed comparison community of Sale, were assessed for symptoms of posttraumatic distress 2.5 years after the Hazelwood incident using the Impact of Events Scale-Revised (IES-R). Individual-level PM₂.₅ exposure was estimated by mapping participants’ self-reported location data on modelled PM₂.₅ concentrations related to the mine fire. Multivariate linear regression was used to evaluate the exposure-response relationship. Both mean and peak exposure to mine fire-related PM₂.₅ were found to be associated with participant IES-R scores with an interaction effect between age and mean PM₂.₅ exposure also identified. Each 10 μg/m³ increase in mean PM₂.₅ exposure corresponded to a 0.98 increase in IES-R score (95% CI: 0.36 to 1.61), and each 100 μg/m³ increase in peak PM₂.₅ exposure corresponded to a 0.36 increase (95% CI: 0.06 to 0.67). An age-effect was observed, with the exposure-response association found to be stronger for younger adults. The results suggest that increased exposure to PM₂.₅ emissions from the Hazelwood mine fire event was associated with higher levels of psychological distress associated with the mine fire and the most pronounced effect was on younger adults living in the affected community.
Mostrar más [+] Menos [-]Mercury contamination status of rice cropping system in Pakistan and associated health risks
2020
Aslam, Muhammad Wajahat | Ali, Waqar | Meng, Bo | Abrar, Muhammad Mohsin | Lu, Benqi | Qin, Chongyang | Zhao, Lei | Feng, Xinbin
Rice is a known bioaccumulator of methylmercury (MeHg). Rice consumption may be the primary pathway of MeHg exposure in certain mercury (Hg)-contaminated areas of the world. Pakistan is the 4th-largest rice exporter in the world after India, Thailand, and Vietnam. This study aimed to evaluate the Hg contamination status of rice from Pakistan and the health risks associated with Hg exposure through its consumption. 500 rice grain samples were collected from two major rice-growing provinces, Punjab and Sindh, which contain 92% of Pakistan’s rice cultivation area. Analysis of polished rice showed mean total Hg (THg) concentration of 4.51 ng.g⁻¹, while MeHg concentrations of selected samples averaged 3.71 ng.g⁻¹. Only 2% of the samples exceeded the permissible limit of 20 ng.g⁻¹. Samples collected from Punjab showed higher Hg contents than those from Sindh, possibly due to higher rates of urbanization and industrialization. Rice samples collected from areas near brick-making kilns had the highest Hg concentrations due to emissions from the low-quality coal burned. THg and MeHg contents varied by up to five and fourfold, respectively, between point and non-point Hg pollution sites. Moreover, the %Hg as MeHg in rice did not differ significantly between point and non-point Hg sources. Health risk was assessed by calculating a mean probable daily intake, revealing that Hg intake through rice consumption is within the safe limits recommended by the World Health Organization. However, rice intake may be a substantive pathway of MeHg exposure because fish, which are another major source of Hg, are consumed in Pakistan at some of the world’s lowest rates. This study provides fundamental data for further understanding of the global issue of Hg contamination of rice and its related health risks. Furthermore, the current study suggests there is a need to conduct further research in rice-growing areas at the regional level.
Mostrar más [+] Menos [-]