Refinar búsqueda
Resultados 611-620 de 4,898
Apportionment of sources of heavy metals to agricultural soils using isotope fingerprints and multivariate statistical analyses
2019
Wang, Pengcong | Li, Zhonggen | Liu, Jinling | Bi, Xiangyang | Ning, Yongqiang | Yang, Shaochen | Yang, Xiaojing
Apportioning sources of environmental pollutants is key to controlling pollution. In this study, the sources of heavy metals to 234 agricultural soils from the Jianghan Plain (JHP) (∼22454 km2) in central China were discriminated between using Cd and Pb isotope compositions and multivariate statistical analyses. Concentrations of some metals in JHP soils (0.48 ± 0.2, 48.2 ± 15.9, 0.12 ± 0.23, 48.8 ± 16.4, 36.5 ± 9.8, and 96.8 ± 42.2 mg kg−1 for Cd, Cu, Hg, Ni, Pb, and Zn, respectively) were higher than background concentrations in Chinese soil. The Cd isotope compositions for the JHP soils (δ114/110Cd values −0.76‰ to −0.25‰) were similar to Cd isotope compositions found for smelter dust and incinerator fly ash, indicating Cd was supplied to the JHP soils by ore smelting and/or refining processes. The Pb isotope compositions for the JHP soils (206Pb/207Pb 1.182–1.195 and 208Pb/206Pb 2.078–2.124) were between the Pb isotope compositions found for Chinese coal and natural sources, which a binary isotope mixing model indicated contributed 52% and 48%, respectively, of the Pb in JHP soils. Cluster analysis and positive matrix factorization indicated that the sources of heavy metals in JHP soils may consist of smelting and/or refining activities, coal combustion, agricultural activities, and natural sources (including Han River sediment and soil parent materials). The isotope fingerprints and multivariate statistical analyses together indicated that coal combustion and smelting and/or refining activities were the main anthropogenic sources of heavy metals polluting JHP soils.
Mostrar más [+] Menos [-]Negative bottom-up effects of sulfadiazine, but not penicillin and tetracycline, in soil substitute on plants and higher trophic levels
2019
Pufal, Gesine | Memmert, Jörg | Leonhardt, Sara Diana | Minden, Vanessa
Veterinary antibiotics are widely used in livestock production and can be released to the environment via manure, affecting non-target organisms. Recent studies provide evidence that antibiotics can adversely affect both plants and insects but whether antibiotics in soil also affect trophic interactions is unknown.We tested whether antibiotics grown in sand as soil substitute with environmentally relevant concentrations of penicillin, sulfadiazine and tetracycline affect the survival of aphids feeding on plants (two crop and one non-crop plant species). Apera spica-venti, Brassica napus, and Triticum aestivum individuals were infested with aphids that were monitored over four weeks. We did not observe effects of penicillin or tetracycline on plants or aphids. However, sulfadiazine treatments reduced plant growth and increased mortality in the two tested grass species, but not in B. napus. Sulfadiazine subsequently decreased aphid density indirectly through reduced host plant biomass. We thus show that an antibiotic at realistic concentrations in a soil substitute can affect several trophic levels, i.e. plants and herbivores. This study contributes to the environmental risk assessment of veterinary antibiotics as it implies that their use potentially affects plant-insect interactions at environmentally relevant concentrations.
Mostrar más [+] Menos [-]Conditions affecting the release of thorium and uranium from the tailings of a niobium mine
2019
Li, Zhizhong | Hadioui, Madjid | Wilkinson, Kevin J.
Determinations of the mobility of metals from tailings is a critical part of any assessment of the environmental impacts of mining activities. The leaching of thorium and uranium from the tailings of different processing stages of a niobium mine was investigated for several pH, ionic strengths and concentrations of natural organic matter (NOM). The pH of the leaching solution did not have a noticeable impact on the extraction of Th, however, for pH values below 4, increased U mobilization was observed. Similarly, only a small fraction of Th (0.05%, ≤15 μg kg⁻¹) and U (1.22%, ≤6 μg kg⁻¹) were mobilized from the tailings in the presence of environmentally relevant concentrations of Ca, Mg or Na. However, in the presence of 10 mg L⁻¹ of fulvic acid, much higher concentrations of ca. 700 μg kg⁻¹ of Th and 35 μg kg⁻¹ of U could be extracted from the tailings. Generally, colloidal forms of Th and dissolved forms of U were mobilized from the tailings, however, in the presence of the fulvic acid, both dissolved and colloidal forms of the two actinides were observed. Single Particle ICP-MS was used to confirm the presence of Th (and U) containing colloids where significant numbers (up to 10⁷ mL⁻¹) of Th and U containing colloids were found, even in 0.2 μm filtered extracts. Although mass equivalent diameters in the range of 6–13 nm Th and 6–9 nm for U could be estimated (based upon the presence of an oxyhydroxide), most of the colloidal mass was attributed to larger (>200 nm) heterocomposite particles.
Mostrar más [+] Menos [-]Isotopic evaluation on relative contributions of major NOx sources to nitrate of PM2.5 in Beijing
2019
Song, Wei | Wang, Yan-Li | Yang, Wen | Sun, Xin-Chao | Tong, Yin-Dong | Wang, Xue-Mei | Liu, Cong-Qiang | Bai, Zhi-Peng | Liu, Xue-Yan
Nitrate (NO₃⁻) is a key component of secondary inorganic aerosols and PM₂.₅. However, the contributions of nitrogen oxides (NOₓ) emission sources to NO₃⁻ in PM₂.₅ remain poorly constrained. This study measured nitrogen (N) isotopes of NO₃⁻ (hereafter as δ¹⁵N-NO₃⁻) in PM₂.₅ collected at Beijing in 2014. We observed that δ¹⁵N-NO₃⁻ values in PM₂.₅ (−2.3‰ − 19.7‰; 7.3 ± 5.4‰ annually) were significantly higher in winter (11.9 ± 4.4‰) than in summer (2.2 ± 2.5‰). The δ¹⁵N differences between source NOₓ and NO₃⁻ in PM₂.₅ (hereafter as Δ values) were estimated by a computation module as 7.8 ± 2.2‰ − 10.4 ± 1.6‰ (8.8 ± 2.4‰). Using the Δ values and δ¹⁵N values of NOₓ from major fossil (coal combustion, vehicle exhausts) and non-fossil sources (biomass burning, microbial N cycle), contributions of major NOₓ sources to NO₃⁻ in PM₂.₅ were further estimated by the SIAR model. We found that seasonal variations of δ¹⁵N-NO₃⁻ values in PM₂.₅ of Beijing were mainly caused by those of NOₓ contributions from coal combustion (38 ± 10% in winter, 20 ± 9% in summer). Annually, NOₓ from coal combustion, vehicle exhausts, biomass burning, and microbial N cycle contributed 28 ± 12%, 29 ± 17%, 27 ± 15%, and 16 ± 7% to NO₃⁻ in PM₂.₅, respectively, showing actually comparable contributions between non-fossil NOₓ (43 ± 16%) and fossil NOₓ (57 ± 21%). These results are useful for planning the reduction of NOₓ emissions in city environments and for elucidating relationships between regional NOₓ emissions and atmospheric NO₃⁻ pollution or deposition.
Mostrar más [+] Menos [-]Seasonal pattern of ammonium 15N natural abundance in precipitation at a rural forested site and implications for NH3 source partitioning
2019
Huang, Shaonan | Elliott, Emily M. | Felix, J David | Pan, Yuepeng | Liu, Dongwei | Li, Shanlong | Li, Zhengjie | Zhu, Feifei | Zhang, Na | Fu, Pingqing | Fang, Yunting
Excess ammonia (NH₃) emissions and deposition can have negative effects on air quality and terrestrial ecosystems. Identifying NH₃ sources is a critical step for effectively reducing NH₃ emissions, which are generally unregulated around the world. Stable nitrogen isotopes (δ¹⁵N) of ammonium (NH₄⁺) in precipitation have been directly used to partition NH₃ sources. However, nitrogen isotope fractionation during atmospheric processes from NH₃ sources to sinks has been previously overlooked. Here we measured δ¹⁵NNH₄⁺ in precipitation on a daily basis at a rural forested site in Northeast China over three years to examine its seasonal pattern and attempt to constrain the NH₃ sources. We found that the NH₄⁺ concentrations in precipitation ranged from 5 to 1265 μM, and NH₄⁺ accounted for 65% of the inorganic nitrogen deposition (20.0 kg N ha⁻¹ yr⁻¹) over the study period. The δ¹⁵N values of NH₄⁺ fluctuated from −24.6 to +16.2‰ (average −6.5‰) and showed a repeatable seasonal pattern with higher values in summer (average −2.3‰) than in winter (average −16.4‰), which could not be explained by only the seasonal changes in the NH₃ sources. Our results suggest that in addition to the NH₃ sources, isotope equilibrium fractionation contributed to the seasonal pattern of δ¹⁵NNH₄⁺ in precipitation, and thus, nitrogen isotope fractionation should be considered when partitioning NH₃ sources based on δ¹⁵NNH₄⁺ in precipitation.
Mostrar más [+] Menos [-]Vertical mixing with return irrigation water the cause of arsenic enrichment in groundwater of district Larkana Sindh, Pakistan
2019
Ali, Waqar | Mushtaq, Nisbah | Javed, Tariq | Zhang, Hua | Ali, Kamran | Rasool, Atta | Farooqi, Abida
Stable isotopes ratios (‰) of Hydrogen (δ2H) and Oxygen (δ1⁸O) were used to trace the groundwater recharge mechanism and geochemistry of arsenic (As) contamination in groundwater from four selected sites (Larkana, Naudero, Ghari Khuda Buksh and Dokri) of Larkana district. The stable isotope values of δ2H and δ1⁸O range from 70.78‰ to −56.01‰ and from −10.92‰ to −7.35‰, relative to Vienna Standard for Mean Ocean Water (VSMOW) respectively, in all groundwater samples, thus indicating the recharge source of groundwater from high-salinity older water. The concentrations of As in all groundwater samples were ranged from 2 μg/L to 318 μg/L, with 67% of samples exhibited As levels exceeding than that of World Health Organization (WHO) permissible limit 10 μg/L and 42% of samples expressed the As level exceeding than that of the National Environmental Quality Standard (NEQS) 50 μg/L. The leaching and vertical mixing with return irrigation water are probably the main processes controlling the enrichment of As in groundwater of Larkana, Naudero, Ghari Khuda Buksh and Dokri. The weathering of minerals mostly controlled the overall groundwater chemistry; rock-water interactions and silicate weathering generated yielded solutions that were saturated in calcite and dolomite in two areas while halite dissolution is prominent with high As area.
Mostrar más [+] Menos [-]Using scrap zero valent iron to replace dissolved iron in the Fenton process for textile wastewater treatment: Optimization and assessment of toxicity and biodegradability
2019
GilPavas, Edison | Correa-Sánchez, Santiago | Acosta, Diego A.
A Fenton like advanced oxidation process (AOP) employing scrap zerovalent iron (SZVI) and hydrogen peroxide (H2O2) was studied for industrial textile wastewater treatment from a textile manufacturing plant located at Medellín, Colombia (South America). The wastewater effluent studied contains a mixture of organic compounds resistant to conventional treatments. The effect of initial pH and SZVI concentration and H2O2 concentration were studied by a response surface methodology (RSM) Box-Behnken design of experiment (BBD). The combined SZVI/H2O2 process led to reductions of 95% color, 76% of chemical oxygen demand (COD) and 71% of total organic carbon (TOC) at optimal operating conditions of pH = 3, SZVI = 2000 mg/L and [H2O2] = 24.5 mM. Molecular weight distribution measurement (MWD), ultraviolet–visible (UV–Vis) spectroscopy, HPLC, biodegradability and toxicity were used to characterize the pollutants after the treatment process finding that the resulting effluent was polluted mostly by low molecular weight carboxylic acids. A remarkable biodegradability enhancement of the effluent was evidenced by a BOD5/COD ratio increase from 0.22 to 0.4; also, the SZVI/H2O2 process successfully reduced the toxicity from 60% to 20% of dead A. Salina crustaceans.
Mostrar más [+] Menos [-]Wing membrane and fur samples as reliable biological matrices to measure bioaccumulation of metals and metalloids in bats
2019
Mina, Rúben | Alves, Joana | Silva, António Alves da | Natal-da-Luz, Tiago | Cabral, João A. | Barros, Paulo | Topping, Christopher J. | Sousa, José Paulo
There is a growing conservation concern about the possible consequences of environmental contamination in the health of bat communities. Most studies on the effects of contaminants in bats have been focused on organic contaminants, and the consequences of bat exposure to metals and metalloids remain largely unknown. The aim of this study was to evaluate the suitability of external biological matrices (fur and wing membrane) for the assessment of exposure and bioaccumulation of metals in bats. The concentration of arsenic, cadmium, cobalt, chromium, copper, manganese, nickel, lead, selenium and zinc was measured in internal organs (liver, heart, brain), internal (bone) and external tissues (wing membrane, fur) collected from bat carcasses of four species (Hypsugo savii, Nyctalus leisleri, Pipistrellus pipistrellus, Pipistrellus pygmaeus) obtained in windfarm mortality searches. With the exception of zinc (P = 0.223), the results showed significant differences between the concentrations of metals in the analyzed tissues for all metals (P < 0.05). Significant differences were also found between organs/tissues (P < 0.001), metals (P < 0.001) and a significant interaction between organs/tissues and metals was found (P < 0.001). Despite these results, the patterns in terms of metal accumulation were similar for all samples. Depending on the metal, the organ/tissue that showed the highest concentrations varied, but fur and wing had the highest concentrations for most metals. The variability obtained in terms of metal concentrations in different tissues highlights the need to define standardized methods capable of being applied in monitoring bat populations worldwide. The results indicate that wing membrane and fur, biological matrices that may be collected from living bats, yield reliable results and may be useful for studies on bats ecotoxicology, coupled to a standardized protocol for large-scale investigation of metal accumulation.
Mostrar más [+] Menos [-]Combined spatial and retrospective analysis of fluoroalkyl chemicals in fluvial sediments reveal changes in levels and patterns over the last 40 years
2019
Mourier, B. | Labadie, P. | Desmet, M. | Grosbois, C. | Raux, J. | Debret, M. | Copard, Y. | Pardon, P. | Budzinski, H. | Babut, M.
Bed sediments and a dated sediment core were collected upstream and downstream from the city of Lyon (France) to assess the spatial and temporal trends of contamination by per- and polyfluoroalkyl substances (PFASs) in this section of the Rhône River. Upstream from Lyon, concentrations of total PFASs (ΣPFASs) in sediments are low (between 0.19 and 2.6 ng g⁻¹ dry weight - dw), being characterized by a high proportion of perfluorooctane sulfonate (PFOS). Downstream from Lyon, and also from a fluoropolymer manufacturing plant, ΣPFASs concentrations reach 48.7 ng g⁻¹ dw. A gradual decrease of concentrations is reported at the coring site further downstream (38 km). Based on a dated sediment core, the temporal evolution of PFASs is reconstructed from 1984 to 2013. Prior to 1987, ΣPFASs concentrations were low (≤2 ng g⁻¹ dw), increasing to a maximum of 51 ng g⁻¹ dw in the 1990s and then decreasing from 2002 to the present day (∼10 ng g⁻¹ dw). In terms of the PFAS pattern, the proportion of perfluoroalkyl sulfonic acids (PFSAs) has remained stable since the 1980s (∼10%), whereas large variations are reported for carboxylic acids (PFCAs). Long chain- (C > 8) PFCAs characterized by an even number of perfluorinated carbons represent about 74% of the total PFAS load until 2005. However, from 2005 to 2013, the relative contribution of long chain- (C > 8) PFCAs with an odd number of perfluorinated carbons reaches 80%. Such changes in the PFAS pattern likely highlight a major shift in the industrial production process. This spatial and retrospective study provides valuable insights into the long-term contamination patterns of PFAS chemicals in river basins impacted by both urban and industrial activities.
Mostrar más [+] Menos [-]Inflammatory and functional responses after (bio)diesel exhaust exposure in allergic sensitized mice. A comparison between diesel and biodiesel
2019
Timmerman, Tirza | de Brito, Jôse Mára | de Almeida, Natalia Madureira | de Almeida, Francine Maria | Arantes-Costa, Fernanda Magalhães | Guimaraes, Eliane Tigre | Lichtenfels, Ana Julia Faria Coimbra | Rivero, Dolores Helena Rodriguez Ferreira | de Oliveira, Regiani Carvalho | de Lacerda, João Paulo Amorim | Moraes, Jamille Moreira | Pimental, Danilo Augusto | Saraiva-Romanholo, Beatriz Mangueira | Saldiva, Paulo H. N. (Paulo Hilário Nascimento) | Vieira, Rodolfo de Paula | Mauad, Thais
Many cities fail to meet air quality standards, which results in increased risk for pulmonary disorders, including asthma. Human and experimental studies have shown that diesel exhaust (DE) particles are associated with worsening of allergic asthma. Biodiesel (BD), a cleaner fuel from renewable sources, was introduced in the eighties. Because of the reduction in particulate matter (PM) emissions, BD was expected to cause fewer adverse pulmonary effects. However, only limited data on the effect of BD emissions in asthma are available.Determine whether BD exhaust exposure in allergic sensitized mice leads to different effects on inflammatory and functional responses compared to DE exposure.Balb/C mice were orotracheally sensitized with House Dust Mite (HDM) or a saline solution with 3 weekly instillations. From day 9 until day 17 after sensitization, they were exposed daily to filtered air (FA), DE and BD exhaust (concentration: 600 μg/m³ PM₂.₅). Lung function, bronchoalveolar lavage fluid (BALF) cell counts, cytokine levels (IL-2, IL-4, IL-5, IL-17, TNF-α, TSLP) in the BALF, peribronchiolar eosinophils and parenchymal macrophages were measured.HDM-sensitized animals presented increased lung elastance (p = 0.046), IgG1 serum levels (p = 0.029), peribronchiolar eosinophils (p = 0.028), BALF levels of total cells (p = 0.020), eosinophils (p = 0.028), IL-5 levels (p = 0.002) and TSLP levels (p = 0.046) in BALF. DE exposure alone increased lung elastance (p = 0.000) and BALF IL-4 levels (p = 0.045), whereas BD exposure alone increased BALF TSLP levels (p = 0.004). BD exposure did not influence any parameters after HDM challenge, while DE exposed animals presented increased BALF levels of total cells (p = 0.019), lymphocytes (p = 0.000), neutrophils (p = 0.040), macrophages (p = 0.034), BALF IL-4 levels (p = 0.028), and macrophagic inflammation in the lung tissue (p = 0.037), as well as decreased IgG1 (p = 0.046) and IgG2 (p = 0.043) levels when compared to the HDM group.The results indicate more adverse pulmonary effects of DE compared to BD exposure in allergic sensitized animals.
Mostrar más [+] Menos [-]