Refinar búsqueda
Resultados 621-630 de 6,558
Upcycling of waste polyethylene terephthalate plastic bottles into porous carbon for CF4 adsorption Texto completo
2020
Yuan, Xiangzhou | Cho, Moon-Kyung | Lee, Jong Gyu | Choi, Seung Wan | Lee, Ki Bong
Thermo-chemical processes for converting plastic wastes into useful materials are considered promising technologies to mitigate the environmental pollution caused by plastic wastes. In this study, polyethylene terephthalate (PET) plastic wastes were used to develop cost-effective and value-added porous carbons; the developed porous carbons were subsequently tested for capturing CF₄, a greenhouse gas with a high global-warming potential. The activation temperature was varied from 600 °C to 1000 °C and the mass ratio of KOH/carbon ranged from 1 to 3 in the preparation process and their effects on the textural properties and CF₄-capture performance of the PET plastic waste-derived porous carbons were investigated. The CF₄-adsorption uptake was dictated by the specific surface area and pore volume of narrow micropores less than 0.9 nm in diameter. PET-K(2)700, which was developed by KOH activation at 700 °C and KOH/carbon mass ratio of 2, showed the highest CF₄-adsorption uptake of 2.43 mmol g⁻¹ at 25 °C and 1 atm. Also, the CF₄-adsorption data were fitted well with the Langmuir isotherm model and pseudo second-order kinetic model. The PET plastic waste-derived porous carbons exhibited a high CF₄ uptake, good CF₄/N₂ selectivity at relatively low CF₄ pressures, easy regeneration, rapid adsorption/desorption kinetics, and excellent recyclability, which are promising for practical CF₄-capture applications.
Mostrar más [+] Menos [-]Fumonisins B1 exposure triggers intestinal tract injury via activating nuclear xenobiotic receptors and attracting inflammation response Texto completo
2020
Li, Xinran | Cao, Changyu | Zhu, Xingyi | Li, Xiaowen | Wang, Kai
Fumonisins (FBs) are mycotoxins that are widely distributed in crops and feed, and ingestion of FBs -contaminated crops is harmful to animal health. Furthermore, it is unknown if Fumonisins B1 (FB1) can cause intestinal toxicity. To investigate FB1-induced intestinal toxicity, mice were treated with 0 or 5 mg/kg FB1 by gavage administration for 42 days. Histopathology indicated that FB1 exposure caused proliferation of intestinal epithelial cells, intestinal villi and epithelial layer shedding, intestinal gland atrophy, and necrosis. Notably, FB1 interfered with nuclear xenobiotic receptors (NXR) homeostasis by regulating the level of aryl hydrocarbon receptor (AHR), constitutive androstane receptor (CAR), pregnane X receptor (PXR) and downstream target genes (CYP450s). Moreover, abnormal expression of inflammatory cytokines (IL-1β, IL-2, IL-4, IL-10, and TNF-α) indicated the occurrence of inflammation. The present study provides new insights regarding the mechanism of FB1-induced intestinal toxicity through activating the NXR system and by triggering inflammatory responses in the intestinal tract in mice.
Mostrar más [+] Menos [-]Identification and quantification of phenanthrene ortho-quinones in human urine and their association with lipid peroxidation Texto completo
2020
Luo, Kai | Carmella, Steven G. | Zhao, Yingchun | Tang, Mei Kuen | Hecht, Stephen S.
Although human exposure to polycyclic aromatic hydrocarbons (PAH) has been associated with in vivo oxidative damage, and hydroxyPAH metabolites have been used as biomarkers to assess PAH-induced oxidative stress, few studies have looked at the likely causative compounds for oxidative stress in humans - PAH quinones. We developed a method using pre-column derivatization - liquid chromatography-heated electrospray ionization-tandem mass spectrometry (LC-HESI-MS/MS) to analyze ortho-phenanthrene quinones (PheQs) in human urine. 1,2-PheQ and 3,4-PheQ were identified and quantified in 3 mL of human urine; their total concentrations were higher in cigarette smokers (0.79 ± 0.98 nmol/6h urine) than in nonsmokers (0.20 ± 0.98 nmol/6h urine) (p < 0.01). The total of 1,2-PheQ and 3,4-PheQ were more strongly correlated with urinary (Z)-7-[1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoic acid (8-iso-PGF₂α), a biomarker of lipid peroxidation (R² = 0.53, p < 0.001), than the other phenanthrene metabolites including phenanthrene tetraol (PheT), phenanthrene-1,2-dihydrodiol (1,2-PheD), and total phenanthrene phenols (OHPhe), consistent with the concept that PheQs and likely other PAH quinones play a causal role in the generation of reactive oxygen species (ROS) in humans. Thus, PheQs may be suitable as biomarkers to assess human exposure to oxygenated PAH and the subsequent oxidative damage. This study provides unique support, by analysis of human urinary metabolites, for the PAH quinone mediated oxidative damage hypothesis of PAH carcinogenesis.
Mostrar más [+] Menos [-]Arsenic concentrations, distributions and bioaccessibilities at a UNESCO World Heritage Site (Devon Great Consols, Cornwall and West Devon Mining Landscape) Texto completo
2020
Braungardt, Charlotte | Chen, Xiaqing | Chester-Sterne, Daniel | Quinn, James G.A. | Turner, Andrew
Devon Great Consols (DGC) is a region in south west England where extensive mining for Cu, Sn and As took place in the nineteenth century. Because of its historical and geological significance, DGC has protected status and is part of the Cornwall and West Devon Mining Landscape UNESCO World Heritage Site. Recently, the region was opened up to the public with the construction or redevelopment of various trails, tracks and facilities for walking, cycling and field visits. We used portable x-ray fluorescence spectrometry to measure, in situ, the concentrations of As in soils and dusts in areas that are accessible to the public. Concentrations ranged from about 140 to 75,000 μg g⁻¹ (n = 98), and in all but one case exceeded a Category 4 Screening Level for park-type soil of 179 μg g⁻¹. Samples returned to the laboratory and fractionated to <63 μm were subjected to an in vitro assessment of both oral and inhalable bioaccessibility, with concentrations ranging from <10 to 25,500 μg g⁻¹ and dependent on the precise nature and origin of the sample and the physiological fluid applied. Concentrations of As in PM₁₀ collected along various transects of the region averaged over 30 ng m⁻³ compared with a typical concentration in UK air of <1 ng m⁻³. Calculations using default EPA and CLEA estimates and that factor in for bioaccessibility suggest a 6-h visit to the region results in exposure to As well in excess of that of minimum risk. The overall risk is exacerbated for frequent visitors to the region and for workers employed at the site. Based on our observations, we recommend that the remodelling or repurposing of historical mine sites require more stringent management and mitigation measures.
Mostrar más [+] Menos [-]Evaluation on the biomagnification or biodilution of trace metals in global marine food webs by meta-analysis Texto completo
2020
Sun, Tao | Wu, Huifeng | Wang, Xiaoqing | Ji, Chenglong | Shan, Xiujuan | Li, Fei
The transmission and accumulation of trace metals in marine food webs have a profound influence on the structure and function of marine environment. In order to quantitatively assess the trophic transfer behaviors of eight common metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in simplified five-trophic level marine food webs, a total of 9929 biological samples from 61 studies published between 2000 and 2019, involving 154 sampling sites of 33 countries/regions, were re-compiled using meta-analysis. Based on concentration-trophic level weighted linear regression and predator/prey comparison, the food web magnification factor (FWMF) and the biomagnification factor (BMF) were calculated, respectively. The results showed dissimilar trophic transfer behaviors of these metals in global marine food webs, in which As and Ni tended to be efficiently biodiluted with increasing trophic levels (FWMFs < 1, p < 0.01), while Hg, Pb and Zn trophically biomagnified (FWMFs > 1, p < 0.05). However, Cd, Cr and Cu presented no biomagnification or biodilution trend (p > 0.05). The values of FWMFs were ranked as: Hg (2.01) > Pb (1.81) > Zn (1.15) > Cu (1.13) > Cr (0.951) > Cd (0.850) > Ni (0.731) > As (0.494). In terms of specific predator-prey relationship, Pb showed significant biodilution from tertiary consumers (TC) to top predators (BMF < 1, p < 0.05), whereas Cd and Cu displayed obvious biomagnification from primary consumers (PC) to secondary consumers (SC) (BMFs >1, p < 0.05). Additionally, when Cu and Zn were transferred from SC to TC, and primary producers to PC, clear biodilution and biomagnification effects were observed, respectively (p < 0.05). Further analysis indicated that the average concentration of Hg in five-trophic level marine food webs of developed countries (0.904 mg kg⁻¹ dw) was more noticeable (p < 0.05) than that of developing countries (0.549 mg kg⁻¹ dw).
Mostrar más [+] Menos [-]The key role of Geobacter in regulating emissions and biogeochemical cycling of soil-derived greenhouse gases Texto completo
2020
Li, Tian | Zhou, Qixing
In the past two decades, more and more attentions have been paid to soil-derived greenhouse gases (GHGs) including carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) because there are signs that they have rising negative impacts on the sustainability of the earth surface system. Farmlands, particularly paddy soils, have been regarded as the most important emitter of GHGs (nearly 17%) due to a large influx of fertilization and the abundance in animals, plants and microorganisms. Geobacter, as an electroactive microorganism widely occurred in soil, has been well studied on electron transport mechanisms and the direct interspecies electron transfer. These studies on Geobacter illustrate that it has the ability to be involved in the pathways of soil GHG emissions through redox reactions under anaerobic conditions. In this review, production mechanisms of soil-derived GHGs and the amount of these GHGs produced had been first summarized. The cycling process of CH₄ and N₂O was described from the view of microorganisms and discussed the co-culture relationships between Geobacter and other microorganisms. Furthermore, the role of Geobacter in the production of soil-derived GHGs is defined by biogeochemical cycling. The complete view on the effect of Geobacter on the emission of soil-derived GHGs has been shed light on, and appeals further investigation.
Mostrar más [+] Menos [-]Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital cities in the world Texto completo
2020
Rodríguez-Urrego, Daniella | Rodríguez-Urrego, Leonardo
On December 31, 2019, the Chinese authorities reported to the World Health Organization (WHO) the outbreak of a new strain of coronavirus that causes a serious disease in the city of Wuhan, China. This outbreak was classified as SARS-CoV2 and is the cause of the COVID-19 disease. On March 11, 2020, the WHO declares it a Pandemic and today it is considered the greatest challenge in global health that humanity has faced since World War II and it is estimated that between 40 and 60% of the population worldwide will catch the virus. This has caused enormous challenges in countries around the world in social, economic, environmental and obviously health issues. These challenges are mainly due to the effects of the established quarantines in almost all capitals and major cities around the world, from Asia, Europe to America. However, these lockdown which began worldwide from January 23, have had a significant impact on the environment and on the air quality of cities as recently reported by NASA (National Aeronautics and Space Administration) and ESA (European Space Agency), with reductions according to them of up to 30% in some of the epicenters such as the case of Wuhan. Knowing that air pollution causes approximately 29% of lung cancer deaths, 43% of COPD deaths, and 25% of ischemic heart disease deaths, it is important to know the effects of quarantines in cities regarding air quality to take measures that favor populations and urban ecosystems when the emergency ends. Therefore, this paper describes the behavior of PM₂.₅ emissions particulate matter from the 50 most polluted capital cities in the world according to the WHO, measured before-after the start of the quarantine. Likewise, the impact at the local and global level of this emissions behavior, which averaged 12% of PM₂.₅ decrease in these cities.
Mostrar más [+] Menos [-]The neonicotinoid thiacloprid causes transcriptional alteration of genes associated with mitochondria at environmental concentrations in honey bees Texto completo
2020
Fent, Karl | Schmid, Michael | Hettich, Timm | Schmid, Simon
Thiacloprid is widely used in agriculture and may affect pollinators. However, its molecular effects are poorly known. Here, we report the global gene expression profile in the brain of honey bee foragers assessed by RNA-sequencing. Bees were exposed for 72 h to nominal concentrations of 25 and 250 ng/bee via sucrose solution. Determined residue concentrations by LC-MS/MS were 0.59 and 5.49 ng/bee, respectively. Thiacloprid exposure led to 5 and 71 differentially expressed genes (DEGs), respectively. Nuclear genes encoding mitochondrial ribosomal proteins and enzymes involved in oxidative phosphorylation, as well as metabolism enzymes and transporters were altered at 5.49 ng/bee. Kyoto Encylopedia of Genes and Genomes (KEGG) analysis revealed that mitochondrial ribosome proteins, mitochondrial oxidative phosphorylation, pyrimidine, nicotinate and nicotinamide metabolism and additional metabolic pathways were altered. Among 21 genes assessed by RT-qPCR, the transcript of farnesol dehydrogenase involved in juvenile hormone III synthesis was significantly down-regulated. Transcripts of cyp6a14-like and apolipophorin-II like protein, cytochrome oxidase (cox17) and the non-coding RNA (LOC102654625) were significantly up-regulated at 5.49 ng/bee. Our findings indicate that thiacloprid causes transcriptional changes of genes prominently associated with mitochondria, particularly oxidative phosphorylation. This highlight potential effects of this neonicotinoid on energy metabolism, which may compromise bee foraging and thriving populations at environmentally relevant concentrations.
Mostrar más [+] Menos [-]Parental exposure to environmental concentrations of tris(1,3-dichloro-2-propyl)phosphate induces abnormal DNA methylation and behavioral changes in F1 zebrafish larvae Texto completo
2020
Ding, Xisheng | Sun, Wen | Dai, Lili | Liu, Chunsheng | Sun, Qian | Wang, Jianghua | Zhang, Panwei | Li, Kun | Yu, Liqin
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been demonstrated to be transferred from parental animals to their offspring. However, whether parental exposure to environmental concentrations of TDCIPP show neurodevelopmental toxicity in the F1 generation and the possible underlying mechanism remain unclear. Therefore, in this study, zebrafish embryos were exposed to environmental concentrations of TDCIPP (3, 30 and 300 ng L⁻¹) for 120 days. The effects of exposure on motor behaviors, neurotransmitter levels, DNA methylation, and gene expression of F1 larvae were investigated. Parental exposure left TDCIPP residues in F1 eggs as well as reduced body length of F1 larvae. Moreover, parental exposure significantly reduced swimming activity in F1 5 dpf larvae, although it did not significantly alter serotonin, dopamine, 3,4-dihydroxyphenylacetic acid, γ-aminobutyrate, and acetylcholine levels. Genes encoding DNA methylation transferases (dnmt3aa and dnmt1) were downregulated in F1 larvae. Reduced representation bisulfite sequencing analysis revealed 446 differentially methylated regions and enriched neuronal cell body Gene Ontology term in F1 generation. Correlation analysis between the expression of genes related to neural cell body and swimming speed indicated that solute carrier family 1 member 2b (slc1a2b) downregulation might be responsible for the inhibition of motor behaviors. Furthermore, bisulfite amplicon sequencing analysis confirmed hypermethylation of the promoter region of slc1a2b in F1 larvae following parental exposure to 300 ng L⁻¹ TDCIPP, which might have led to significant downregulation of gene expression and, in turn, influenced the motor behaviors. These results indicate that parental exposure to environmental concentrations of TDCIPP alters DNA methylation, downregulates gene expressions and, thus inducing developmental neurotoxicity, in F1 larvae.
Mostrar más [+] Menos [-]Association between long-term exposure to ambient air pollution and obesity in a Chinese rural population: The Henan Rural Cohort Study Texto completo
2020
Liu, Xiaotian | Tu, Runqi | Qiao, Dou | Niu, Miaomiao | Li, Ruiying | Mao, Zhenxing | Huo, Wenqian | Chen, Gongbo | Xiang, Hao | Guo, Yuming | Li, Shanshan | Wang, Chongjian
Association between long-term exposure to ambient air pollution and obesity remains inconclusive, and the evidence from rural areas was limited. Thus, this study aimed to assess the association between ambient air pollution and obesity based on different anthropometric indices in Chinese rural adults, and further to compare the effect sizes of different air pollution types. A total of 38,824 participants (aged 18–79 years) were recruited from the Henan Rural Cohort Study. Logistic and multivariable linear regression model were used to examine the association between ambient air pollution exposure (including particulate matter with aerodynamic diameters ≤ 1.0 μm (PM₁), ≤2.5 μm (PM₂.₅), and ≤10 μm (PM₁₀), and nitrogen dioxide (NO₂)) and obesity as well as obese anthropometric indices (including body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), body fat percentage (BFP), and visceral fat index (VFI)). The potential effect modifications were also examined. Positive associations were found between long-term exposure to PM₁, PM₂.₅, PM₁₀ and NO₂ and obesity regardless of how obesity was defined (false discovery rate (FDR) < 0.05). Moreover, BMI, WC, WHR, WHtR, BFP, and VFI displayed increased trends with PM₁, PM₂.₅, PM₁₀ and NO₂ concentrations increasing (all FDR<0.05). PM₁₀ had the largest effects on obesity among the four types of air pollution. The elderly, women, individuals with low level of education and income, and those who had high fat diet were more vulnerable to the adverse effects of air pollution. In addition, the results of the sensitivity analysis showed that those associations between ambient air pollution and obesity remained robust. These findings suggest that long-term exposure to ambient air pollutant (particularly PM₁₀) may be positively associated with obesity in Chinese rural adults, especially among the elderly, women, individuals with low education and income, as well as unhealthy lifestyles.
Mostrar más [+] Menos [-]