Refinar búsqueda
Resultados 631-640 de 6,531
Effects of phosphorus availability and phosphorus utilization behavior of Microcystis aeruginosa on its adaptation capability to ultraviolet radiation
2020
Ren, Lingxiao | Wang, Peifang | Wang, Chao | Paerl, Hans W. | Wang, Huiya
Phosphorus (P) plays a critical role in eutrophication and algal growth; therefore, improving our understanding of the impact of P is essential to control harmful algal blooms. In this study, Microcystis aeruginosa was treated with 5-h ambient irradiation in the medium with different dissolved inorganic P (DIP) concentrations, DIP-free, moderate-DIP, and high-DIP, to explore its growth and other physiological responses. Compared to photosynthetically active radiation (PAR), UV-A (320–400 nm) and UV-B (280–320 nm) radiation had inhibitive effects on the photosynthesis and growth of M. aeruginosa, while high P availability could alleviate or eliminate the negative effects of UV radiation. The photosynthetic parameters had a minimum reduction and quickly recovered after re-inoculation under high-DIP conditions. Confirmed by SEM, photosynthetic pigments, the generation of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and other methods, ambient UV radiation exerted oxidative stresses rather than direct lethal effects on M. aeruginosa. Photosynthetic parameters indicated that algal UV-adaptation processes could include decreasing photo-induced damages and increasing self-repair efficiency. The P acquired by M. aeruginosa cells can have two function, which included alleviating UV-induced negative effects and sustaining algal growth. Consequently, UV-adaptation processes of M. aeruginosa resulted in an elevated demand for DIP, which resulted to increased P uptake rates and cellular P quota under moderate and high-DIP conditions. Therefore, the production of carotenoid and phycocyanin, and SOD activity increased under UV stress, leading to a better adaptation capability of M. aeruginosa and decreased negative effects of UV radiation on its growth. Overall, our findings demonstrated the significant interactive effects of P enrichment and irradiation on typical cyanobacteria, and the strong adaptation capability of M. aeruginosa in the eutrophic UV-radiated waters.
Mostrar más [+] Menos [-]Peat burning – An important source of pyridines in the earth atmosphere
2020
Kosyakov, Dmitry S. | Ul’yanovskii, Nikolay V. | Latkin, Tomas B. | Pokryshkin, Sergey A. | Berzhonskis, Valeria R. | Polyakova, Olga V. | Lebedev, Albert T.
Studies of the chemical composition of atmospheric aerosols, rain water and snow in various regions of the globe quite often show the presence of pyridine and a number of its low mass derivatives. Nevertheless, the sources of those compounds in the environment have not yet been established and definitely require elucidation, supported by reliable experimental results. In the present work the chemical composition of peat combustion products as one of the important sources of atmospheric aerosol emission is studied by two-dimensional gas chromatography – high-resolution mass spectrometry with a focus on the detection of pyridine derivatives. Twenty-five compounds of this class were reliably identified and quantified in laboratory experiments on peat burning. Among them 3-hydroxypyridine predominates, while the rest analytes are mostly represented by alkyl derivatives: pyridine, 2-methylpyridine, 3-methylpyridine, 2,5-dimethylpyridine, 2,6-dimethylpyridine, 2-ethylpyridine, lutidines (in order of decreasing concentration). The distribution of these combustion products coincides with that obtained earlier in environmental studies carried out in Arctic, Central Russia and France. The experiments on peat thermal decomposition by pyrolysis GC-MS demonstrated that the maximum concentrations as well as the number of detected analytes were found under conditions of oxygen lack and a temperature of about 500 °C, i.e. characteristic conditions of peat wildfires. The observed levels of pyridines’ emission recalculated on the peat dry weight exceeded 200 mg kg⁻¹. Considering hundreds of millions tons of peat burning in megafires over 20,000 tons of pyridines penetrate the Earth atmosphere annually. The obtained results allow concluding that peat burning may be the major and still underestimated source of pyridine and lower alkylpyridines in the Earth atmosphere.
Mostrar más [+] Menos [-]Advanced determination of the spatial gradient of human health risk and ecological risk from exposure to As, Cu, Pb, and Zn in soils near the Ventanas Industrial Complex (Puchuncaví, Chile)
2020
Tapia-Gatica, Jaime | González-Miranda, Isabel | Salgado, Eduardo | Bravo, Manuel A. | Tessini, Catherine | Dovletyarova, Elvira A. | Paltseva, Anna A. | Neaman, Alexander
The townships of Puchuncaví and Quintero, on the coast of central Chile, have soils contaminated by atmospheric deposition of sulfur dioxide and trace elements from the nearby Ventanas Industrial Complex. The purpose of this study was to evaluate potential human health and ecological risks, by determining the spatial distribution of soil total concentrations arsenic (As), copper (Cu), lead (Pb), and zinc (Zn) in these townships. Total concentrations of these elements were determined in 245 topsoil samples, used to generate continuous distribution maps. The background concentrations of Cu, As, Pb, and Zn in the studied soils were 100, 16, 35, and 122 mg kg⁻¹, respectively. The concentrations of Cu, As, and Pb were positively correlated with each other, suggesting that their source is the Ventanas copper smelter. On the other hand, correlations for Zn were weaker than for other trace elements, suggesting low impact of the Ventanas copper smelter on spatial distribution of Zn. Indeed, only 6% of the study area exhibited Zn concentrations above the background level. In contrast, 77, 32 and 35% of the study area presented Cu, As, and Pb concentrations, respectively, above the background level. The carcinogenic risk due to exposure to As was above the threshold value of 10⁻⁰⁴ in the population of young children (1–5 years old) on 27% of the study area. These risk values are classified as unacceptable, which require specific intervention by the Chilean government. Based on the estimated concentrations of exchangeable Cu, 10, 15, and 75% of the study area exhibited high, medium, and low phytotoxicity risk, respectively.
Mostrar más [+] Menos [-]Effects of ambient particulate matter on fasting blood glucose: A systematic review and meta-analysis
2020
Ma, Runmei | Zhang, Yi | Sun, Zhiying | Xu, Dandan | Li, Tiantian
Studies have found that ambient particulate matter (PM) affects fasting blood glucose. However, the results are not consistent. We conducted a systematic review and meta-analysis to determine the relationship between PM with an aerodynamic diameter of 10 μm or less (PM₁₀) and PM with an aerodynamic diameter of 2.5 μm or less (PM₂.₅) and fasting blood glucose. We searched PubMed, Web of Science, the Wanfang Database and the China National Knowledge Infrastructure up to April 1, 2019. A total of 24 papers were included in the review, and 17 studies with complete or convertible quantitative information were included in the meta-analysis. The studies were divided into groups by PM size fractions (PM₁₀ and PM₂.₅) and length of exposure. Long-term exposures were based on annual average concentrations, and short-term exposures were those lasting less than 28 days. In the long-term exposure group, fasting blood glucose increased 0.10 mmol/L (95% CI: 0.02, 0.17) per 10 μg/m³ of increased PM₁₀ and 0.23 mmol/L (95% CI: 0.01, 0.45) per 10 μg/m³ of increased PM₂.₅. In the short-term exposure group, fasting blood glucose increased 0.02 mmol/L (95% CI: −0.01, 0.04) per 10 μg/m³ of increased PM₁₀ and 0.08 mmol/L (95% CI: 0.04, 0.11) per 10 μg/m³ of increased PM₂.₅. Further prospective studies are needed to explore the relationship between ambient PM exposure and fasting blood glucose.
Mostrar más [+] Menos [-]Anthropogenic contamination of residential environments from smelter As, Cu and Pb emissions: Implications for human health
2020
Fry, Kara L. | Wheeler, Cassandra Anne | Gillings, Max M. | Flegal, A Russell | Taylor, Mark Patrick
Communities in low-income and middle-income countries (LMIC) are disproportionally affected by industrial pollution compared to more developed nations. This study evaluates the dispersal and associated health risk of contaminant-laden soil and dust at a copper (Cu) smelter in Tsumeb, Namibia. It is Africa’s only smelter capable of treating complex Cu ores that contain high arsenic (As) contents (<1%). The analyses focused on the primary trace elements associated with ore processing at the smelter: As, Cu, and lead (Pb). Portable X-Ray fluorescence spectrometry (pXRF) of trace elements in soils (n = 83) and surface dust wipes (n = 80) showed that elemental contamination was spatially associated with proximity to smelter operations. Soil concentrations were below US EPA soil guidelines. Dust wipe values were elevated relative to sites distal from the facility and similar to those at other international smelter locations (As = 1012 μg/m² (95% CI 687–1337); Cu = 1838 μg/m² (95% CI 1191–2485); Pb = 1624 μg/m² (95% CI 862–2385)). Source apportionment for Pb contamination was assessed using Pb isotopic compositions (PbIC) of dust wipes (n = 22). These data revealed that the PbIC of 73% (n = 16/22) of these wipes corresponded to the PbIC of smelter slag and tailings, indicating contribution from industrial emissions to ongoing exposure risk. Modeling of carcinogenic risk showed that dust ingestion was the most important pathway, followed by inhalation, for both adults and children. Dermal contact to trace elements in dust was also determined to pose a carcinogenic risk for children, but not adults. Consequently, contemporary smelter operations remain an ongoing health risk to the surrounding community, in spite of recent efforts to improve emissions from the operations.
Mostrar más [+] Menos [-]Urban particulate matter disturbs the equilibrium of mitochondrial dynamics and biogenesis in human vascular endothelial cells
2020
Wang, Yan | Kong, Lu | Wu, Tianshu | Tang, Meng
Since ambient particulate matter (APM) is closely related to cardiovascular damage with mitochondria being its potential targets, this study was designed to explore the impact of APM on mitochondrial homeostasis, especially on mitochondrial dynamics and biogenesis in human vascular endothelial cells, using a kind of standard material, PM SRM1648a. As a result, internalized particles lead to mitochondrial dysfunction in EA.hy926 human endothelial cells, including mitochondrial reactive oxygen species (mtROS) overproduction, mitochondrial membrane potential (MMP) reduction and adenosine triphosphate (ATP) inhibition, coupled with additional release of mitochondrial DNA (mtDNA) into the cytosol. Moreover, morphological and structural changes in mitochondria are observed in response to PM SRM1648a. In that aspect, according to the evidence of shorter fragmented mitochondria dispersed throughout the cytoplasm, along with aberrant upregulation of fission-related mRNAs/proteins, the mitochondria exhibit a fission phenotype shifting from intact reticular network to fragmentized punctate shapes. Mechanistically, PM SRM1648a facilitates phosphorylation of DRP1 at Ser616 in HUVECs, and triggers its dephosphorylation at Ser637 residue in both EA.hy926 and HUVECs, which are supportive events for mitochondrial fission during particle exposure. Additionally, suppression of a master energy modulator, PGC-1α, reveals that PM SRM1648a has the ability to impair mitochondrial biogenesis. Collectively, it could be well concluded that PM SRM1648a interferes with the equilibrium of mitochondrial dynamics and biogenesis, which is likely to play a pivotal role in mitochondrial dysfunction driven by particles, eventually contributing to endothelial cell damage. Of note, it is more reasonable to conduct risk assessment from both cellular level and subcellular structures, among which mitochondria-targeted toxicity supplements more comprehensive understanding of APM inducible vascular toxicity.
Mostrar más [+] Menos [-]Developing water and nitrogen budgets of a wheat-maize rotation system using auto-weighing lysimeters: Effects of blended application of controlled-release and un-coated urea
2020
Zheng, Wenkui | Wan, Yongshan | Li, Yuncong | Liu, Zhiguang | Chen, Jianqiu | Zhou, Hongyin | Gao, Yongxiang | Chen, Baocheng | Zhang, Min
Evaluation of the effectiveness of best management practices for reducing nitrate leaching in agricultural systems requires detailed water and nitrogen (N) budgets. A 3-year field experiment using 15 auto-weighing lysimeters was set up to quantify nitrate leaching, crop evapotranspiration (ET), and N and water use efficiencies within an intensive wheat-maize rotation system in the Northern China Plain. The lysimeter consists mainly of the following: (1) high-resolution weighing cells; (2) ceramic solution samplers for soil solutions collection; and (3) circular stainless steel leaching trays for collecting seepage water. Two N fertilizer types were applied at two rates (150 and 225 kg N hm⁻² for each crop) with no-N applied as the control. The N fertilizer types were monotypic un-coated urea and a blend product with controlled-release urea (CRU) and un-coated urea. The results indicate that when compared with un-coated urea at the same application rate, the blend product greatly improved water and N use efficiencies with significant increase in yields and crop ET as well as reduction of nitrate accumulation and leaching in the soil profile (p < 0.05). This was mostly because the blend product consistently supplied N to meet crop demands over the entire growth season. The study implied that effective best management practices to control nitrate leaching should be based on technically sound fertilization and irrigation schemes in terms of timing, rate, and fertilizer type to suit site specific conditions.
Mostrar más [+] Menos [-]Quantifying particulate matter reduction and their deposition on the leaves of green infrastructure
2020
Abhijith, K.V. | Kumar, Prashant
The green infrastructure (GI) is identified as a passive exposure control measure of air pollution. This work examines particulate matter (PM) reduction by a roadside hedge and its deposition on leaves. The objectives of this study are to (i) quantify the relative difference in PM concentration in the presence of GI and at an adjacent clear area; (ii) estimate the total mass and number density of PM deposited on leaves of a hedge; (iii) ascertain variations in PM deposition at adult (1.5m) and child (0.6 m) breathing levels on either side of a hedge; (iv) illustrate the relationship between PM deposition to leaves and ambient PM concentration reductions; and (v) quantify the elemental composition of collected particles of the leaves on different heights and sides of hedge. PM reduction of 2–9% was observed behind hedge compared to a clear area and followed a trend of ΔPM₁ >ΔPM₁₀ >ΔPM₂.₅. Counting of particles was found to be an effective method to quantify deposition than weighting methods. Sub-micron particles (PM₁) dominated particle deposition on leaves at all sampling points on both sides of the hedge. PM mass deposition and number concentration to the leaves on traffic-facing side was up to 36% and 58% higher at 0.6m compared with 1.5m height, respectively. Such a difference was absent on the backside of the hedge. The SEM-EDS analysis showed up to 12% higher traffic-originated particles deposited to leaves on the traffic-facing side compared to the backside. The naturally occurring particles dominated in identified particles on leaf samples from all collection points on the hedge. These new evidence expand our understanding of PM reduction of GI in the near-road environment and its variations in particle deposition, depending on height and sides of GI, which could allow a better parameterisation of dispersion-deposition models for GI assessment at micro-scale.
Mostrar más [+] Menos [-]Marine mercury-methylating microbial communities from coastal to Capbreton Canyon sediments (North Atlantic Ocean)
2020
Azaroff, Alyssa | Goñi Urriza, Marisol | Gassie, Claire | Monperrus, Mathilde | Guyoneaud, Rémy
Microbial mercury (Hg) methylation transforms inorganic mercury to neurotoxic methylmercury (MeHg) mainly in aquatic anoxic environments. Sampling challenges in marine ecosystems, particularly in submarine canyons, leads to a lack of knowledge about the Hg methylating microbia in marine sediments. A previous study showed an enrichment of mercury species in sediments from the Capbreton Canyon where both geochemical parameters and microbial activities constrained the net MeHg production. In order to characterize Hg-methylating microbial communities from coastal to deeper sediments, we analysed the diversity of microorganisms’ (16S rDNA-based sequencing) and Hg methylators (hgcA based cloning and sequencing). Both, 16S rDNA and hgcA gene analysis demonstrated that the putative Hg-methylating prokaryotes were likely within the Deltaproteobacteria, dominated by sulfur-compounds based reducing bacteria (mainly sulfate reducers). Additionally, others clades were also identified as carrying HgcA gene, such as, Chloroflexi, Spirochaetes, Elusimicrobia, PVC superphylum (Plantomycetes, Verrucomicrobia and Chlamydiae) and Euryarchaea. Nevertheless, 61% of the hgcA sequences were not assigned to specific clade, indicating that further studies are needed to understand the implication of new microorganisms carrying hgcA in the Hg methylation in marine environments. These first results suggest that sulfur cycle drives the Hg-methylation in marine ecosystem.
Mostrar más [+] Menos [-]Cytotoxicity and hormonal activity of glyphosate-based herbicides
2020
Tóth, Gergő | Háhn, Judit | Radó, Júlia | Szalai, Diána A. | Kriszt, Balázs | Szoboszlay, Sándor
Glyphosate-based herbicides (GBHs) are the most widely used pesticides for weed control. In parallel with the renewal of the active ingredient, polyethoxylated POE(15) containing GBHs were banned in the EU in 2016. Since then, co-formulants were changed and numerous GBHs are marketed with different excipients declared as inert substances. In our study, we focused to determine acute and chronic cytotoxicity (by Aliivibrio fischeri assay) and direct hormonal activity (estrogenic and androgenic effects measured by Saccharomyces cerevisiae BLYES/BLYAS strains, respectively) of glyphosate, AMPA, polyethoxylated POE(15) and 13 GBHs from which 11 formulations do not contain polyethoxylated POE(15). Among the pure substances, neither glyphosate nor AMPA had any effects, while polyethoxylated POE(15) exhibited pronounced toxicity and was also estrogenic but not androgenic. Regarding the acute and chronic cytotoxicity and hormonal activity of GBHs, dilution percentages calculated from EC₅₀ values were in the most cases by one or two order of magnitude lower than the minimum recommended dilution for agricultural and household use. Relation could not be observed between the biological effects and type of glyphosate-salts; hence toxicity could be linked to the co-formulants, which are not even declared in 3 GBHs. Toxicological evaluation must focus on these substances and free accessibility of GBHs should be reconsidered.
Mostrar más [+] Menos [-]