Refinar búsqueda
Resultados 651-660 de 6,546
Assessment of vanadium and nickel enrichment in Lower Athabasca River floodplain lake sediment within the Athabasca Oil Sands Region (Canada) Texto completo
2020
Klemt, Wynona H. | Kay, Mitchell L. | Wiklund, Johan A. | Wolfe, Brent B. | Hall, Roland I.
Sediment quality monitoring is commonly used to assess for river pollution by industrial activities, but requires knowledge of pre-disturbance conditions. This has long been a critical knowledge gap for assessing pollution of the Lower Athabasca River within the Athabasca Oil Sands Region (AOSR) because sediment quality monitoring started 30 years after mining operations began in 1967. Here, we analyze oil-sands pollution indicator metals vanadium (V) and nickel (Ni) in sediment cores from five Athabasca River floodplain lakes spanning from 17 km upstream to 58 km downstream of central oil sands operations. These data are used to define pre-development baseline (i.e., reference) concentrations and assess for enrichment in sediment deposited after 1967. Measurements of organic and inorganic matter content were used to differentiate periods of strong and weaker Athabasca River influence in the sediment records, as needed to discern pathways of metal deposition. Numerical analyses reveal that post-1967 V and Ni enrichment factors have remained below the 1.5 threshold for ‘minimal enrichment’ (sensu Birch, 2017) in stratigraphic intervals of strong river influence in the floodplain lakes. Thus, concentrations of V and Ni carried by Athabasca River sediment have not become measurably enriched since onset of oil sands development, as demonstrated by our before-after study design with >99.99% power to detect a 10% increase above pre-development baselines. At the closest lake (<1 km) to oil sands operations, however, enrichment factors for V and Ni increased to 2.1 and 1.5, respectively, in the mid-1980s and have remained at this level when river influence was weaker, indicating contamination via atmospheric transport. Localized enrichment within the oil sands region via atmospheric pathways is a greater concern for ecosystems and society than local and far-field transport by fluvial pathways.
Mostrar más [+] Menos [-]Impact of sand mining on the carbon sequestration and nitrogen removal ability of soil in the riparian area of Lijiang River, China Texto completo
2020
Qin, Yunbin | Chen, Zhihao | Ding, Bangjing | Li, Zhengkui
Riparian areas are widely recognized as the main areas for carbon sequestration and nitrogen pollution removal, while little is known about the effects of the respective sand mining activities on riparian zones. In this study, the effects of sand mining activities on the soil organic carbon (SOC) storage, different N-removal processes (Feammox, anammox, and denitrification), and composition of the relative bacterial community at a depth of 0–40 cm were determined based on investigations in riparian sand mining areas and adjacent forestlands. The SOC density of the sand mining areas (2.59 t ha⁻¹, depth of 0–40 cm) was lower than that of the riparian forestlands (80.42 t ha⁻¹). Compared with those of the riparian forestland, the sand mining area exhibited a dramatic reduction in the CO₂-fixed gene abundances (cbbL) and a significant change in the composition of cbbL-containing bacteria. The rates of the Feammox (0.038 ± 0.014 mg N kg⁻¹ d⁻¹), anammox (0.017 ± 0.017 mg N kg⁻¹ d⁻¹), and denitrification (0.090 ± 0.1 mg N kg⁻¹ d⁻¹) processes at a depth of 0–20 cm in the soil layer of the sand mining area were reduced by 70.17%, 91.5%, and 93.62% compared with those of the riparian forestland, respectively. The riparian areas in the study area (approximately 12 ha, depth of 0–40 cm) destroyed by sand mining activities released approximately 933.96 t stored soil carbon, which reduce the annual carbon sequestration potential by 28.8–40.8 t. Moreover, the potential N-removal rates in the riparian forestlands (depth of 0–20 cm) by the Feammox, anammox, and denitrification processes were 1514.21–1530.95 kg N ha⁻¹ year⁻¹, whereas the potential N-removal rates in the sand mining area were only 121.2–126.19 kg N ha⁻¹ year⁻¹. Therefore, more investigations are necessary for comparing the benefits and damage of sand mining activities in riparian areas before more sand mining activities are approved.
Mostrar más [+] Menos [-]Occurrence and risk assessment of steroid estrogens in environmental water samples: A five-year worldwide perspective Texto completo
2020
Du, Banghao | Fan, Gongduan | Yu, Weiwei | Yang, Shuo | Zhou, Jinjin | Luo, Jing
The ubiquitous occurrence of steroid estrogens (SEs) in the aquatic environment has raised global concern for their potential environmental impacts. This paper extensively compiled and reviewed the available occurrence data of SEs, namely estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), estriol (E3), and 17α-ethinyl estradiol (EE2), based on 145 published articles in different regions all over the world including 51 countries and regions during January 2015–March 2020. The data regarding SEs concentrations and estimated 17β-estradiol equivalency (EEQ) values are then compared and analyzed in different environmental matrices, including natural water body, drinking and tap water, and wastewater treatment plants (WWTPs) effluent. The detection frequencies of E1, 17β-E2, and E3 between the ranges of 53%–83% in natural water and WWTPs effluent, and the concentration of SEs varied considerably in different countries and regions. The applicability for EEQ estimation via multiplying relative effect potency (REPᵢ) by chemical analytical data, as well as correlation between EEQbᵢₒ and EEQcₐₗ was also discussed. The risk quotient (RQ) values were on the descending order of EE2 > 17β-E2 > E1 > 17α-E2 > E3 in the great majority of investigations. Furthermore, E1, 17β-E2, and EE2 exhibited high or medium risks in water environmental samples via optimized risk quotient (RQf) approach at the continental-scale. This overview provides the latest insights on the global occurrence and ecological impacts of SEs and may act as a supportive tool for future SEs investigation and monitoring.
Mostrar más [+] Menos [-]Effects of microplastics exposure on ingestion, fecundity, development, and dimethylsulfide production in Tigriopus japonicus (Harpacticoida, copepod) Texto completo
2020
Yu, Juan | Tian, Ji-Yuan | Xu, Rui | Zhang, Zheng-Yu | Yang, Gui-Peng | Wang, Xue-Dan | Lai, Jing-Guang | Chen, Rong
The effects of microplastics pollution on the marine ecosystem have aroused attention. Copepod grazing stimulates dimethylsulfide (DMS) release from dimethylsulfoniopropionate (DMSP) in phytoplankton, but the effect of microplastics exposure on DMS and DMSP production during copepod feeding has not yet been revealed. Here, we investigated the effects of polyethylene (PE) and polyamide-nylon 6 (PA 6) microplastics on ecotoxicity and DMS/DMSP production in the copepod Tigriopus japonicus. The microplastics had detrimental effects on feeding, egestion, reproduction, survival, and DMS and DMSP production in T. japonicus and presented significant dose-response relationships. The 24 h-EC50 for ingestion rates (IRs) of female T. japonicus exposed to PE and PA 6 were 57.6 and 58.9 mg L⁻¹, respectively. In comparison, the body size of the copepods was not significantly affected by the microplastics during one generation of culture. Ingesting fluorescently labeled microplastics confirmed that microplastics were ingested by T. japonicus and adhered to the organs of the body surface. T. japonicus grazing promoted DMS release originating from degradation of DMSP in algal cells. Grazing-activated DMS production decreased because of reduced IR in the presence of microplastics. These results provide new insight into the biogeochemical cycle of sulfur during feeding in copepods exposed to microplastics.
Mostrar más [+] Menos [-]Aquatic vascular plants – A forgotten piece of nature in microplastic research Texto completo
2020
Kalčíková, Gabriela
Research on the interaction of microplastics and aquatic organisms has been mainly focused on the evaluation of various impacts on animals while aquatic vascular plants have been so far understudied. In this commentary, we summarized knowledge about interactions of microplastics with aquatic vascular plants and highlighted potential ecological implications. Based on recent research, microplastics have minimal impacts on plants. However, they are strongly attracted to plant tissues, adsorbed, and accumulated by plants. Several mechanisms drive microplastics adsorption and accumulation; the most possibly electrostatic forces, leaf morphology, and presence of periphyton belong among the most important ones. Adsorbed microplastics on plant tissues are easily ingested by herbivores. Plants can thus represent a viable pathway for microplastics to enter aquatic food webs. On the other hand, the strong interactions of microplastics with plants could be used for their phytostabilization and final removal from the environment. Aquatic vascular plants have thus an important role in the behavior and fate of microplastics in aquatic ecosystems, and therefore, they should also be included in the future microplastic research.
Mostrar más [+] Menos [-]Seasonal progression of surface ozone and NOx concentrations over three tropical stations in North-East India Texto completo
2020
Tyagi, Bhishma | Singh, Jyotsna | Beig, G.
Monitoring of surface ozone (O₃) and Nitrogen Oxides (NOx) are vital for understanding the variation and exposure impact of these trace gases over the habitat. The present study analyses the in situ observations of surface O₃ and NOx for January–December 2016, for the first time over three sites of North-Eastern India (Aizwal, Gauhati and Tezpur). The sites are major cities of north-eastern India, located in the foothills of Eastern Himalaya and have no industrial impacts. We have analysed the seasonal variation of O₃ and NOx and found that the site Tezpur, which is in the valley area of Eastern Himalaya, is experiencing higher values of pollutants persisting for a long time compared to the other two stations. The correlation of surface O₃ with the air temperature at all three sites suggested that all the O₃ may not be locally produced, but has the contribution of transported pollution reaching to stations. The study also attempts to discover the existing variability in the surface O₃ and NOx over the study area by employing continuous wavelet analysis.
Mostrar más [+] Menos [-]Hormonal and behavioural effects of motorboat noise on wild coral reef fish Texto completo
2020
Mills, Suzanne C. | Beldade, Ricardo | Henry, Laura | Laverty, David | Nedelec, Sophie L. | Simpson, Stephen D. | Radford, Andrew N.
Anthropogenic noise is an emergent ecological pollutant in both terrestrial and aquatic habitats. Human population growth, urbanisation, resource extraction, transport and motorised recreation lead to elevated noise that affects animal behaviour and physiology, impacting individual fitness. Currently, we have a poor mechanistic understanding of the effects of anthropogenic noise, but a likely candidate is the neuroendocrine system that integrates information about environmental stressors to produce regulatory hormones; glucocorticoids (GCs) and androgens enable rapid individual phenotypic adjustments that can increase survival. Here, we carried out two field-based experiments to investigate the effects of short-term (30 min) and longer-term (48 h) motorboat-noise playback on the behaviour, GCs (cortisol) and androgens of site-attached free-living orange-fin anemonefish (Amphiprion chrysopterus). In the short-term, anemonefish exposed to motorboat-noise playback showed both behavioural and hormonal responses: hiding and aggression increased, and distance moved out of the anemone decreased in both sexes; there were no effects on cortisol levels, but male androgen levels (11-ketotestosterone and testosterone) increased. Some behaviours showed carry-over effects from motorboat noise after it had ceased, and there was no evidence for a short-term change in response to subsequent motorboat-noise playback. Similarly, there was no evidence that longer-term exposure led to changes in response: motorboat noise had an equivalent effect on anemonefish behaviour and hormones after 48 h as on first exposure. Longer-term noise exposure led to higher levels of cortisol in both sexes and higher testosterone levels in males, and stress-responses to an additional environmental challenge in both sexes were impaired. Circulating androgen levels correlated with aggression, while cortisol levels correlated with hiding, demonstrating in a wild population that androgen/glucocorticoid pathways are plausible proximate mechanisms driving behavioural responses to anthropogenic noise. Combining functional and mechanistic studies are crucial for a full understanding of this global pollutant.
Mostrar más [+] Menos [-]Heterogeneity of influential factors across the entire air quality spectrum in Chinese cities: A spatial quantile regression analysis Texto completo
2020
Han, Xiaodan | Fang, Wei | Li, Huajiao | Wang, Yao | Shi, Jianglan
Most of the previous researches estimate influencing factors impact on air quality average without considering the heterogeneity of influential factors on different levels of air quality. In order to detect the different effects of influencing factors on air quality index (AQI) between lower-AQI and higher-AQI cities, this study applies a spatial quantile regression model (SQRM) to investigate heterogeneity of influential factors on AQI, while accounting for spatial autocorrelation of AQI. The results show that heterogeneity effects of windspeed, terrain slope, urbanization sprawl and spatial autocorrelation on AQI are large across the entire AQI spectrum, while heterogeneity effects of precipitation, temperature, relative humidity, terrain fluctuation and urbanization intensity on AQI are not obvious. The spatial positive autocorrelation of AQI in higher-AQI cities is greater than that in lower-AQI cities. Compared with higher-AQI cities, the negative impact of terrain slope on AQI is lager in lower-AQI cities. One unit increase in wind speed contributes AQI to decrease 9.31 to 5.64 then to 5.39 for lower, medium and higher-AQI cities. One unit increase in urbanization sprawl would lead AQI increase 25.6 to 15.6 then to 10.5 for lower, medium and higher-AQI cities. The heterogeneity analysis of meteorological, topographic and socioeconomic factors effects on air quality are of guiding significance for realizing the differentiation of policy measures for air pollution prevention and control.
Mostrar más [+] Menos [-]Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity Texto completo
2020
AbdElgawad, Hamada | Zinta, Gaurav | Hamed, Badreldin A. | Selim, Samy | Beemster, Gerrit | Hozzein, Wael N. | Wadaan, Mohammed A.M. | Asard, Han | Abuelsoud, Walid
Heavy metal accumulation in agricultural land causes crop production losses worldwide. Metal homeostasis within cells is tightly regulated. However, homeostasis breakdown leads to accumulation of reactive oxygen species (ROS). Overall plant fitness under stressful environment is determined by coordination between roots and shoots. But little is known about organ specific responses to heavy metals, whether it depends on the metal category (redox or non-redox reactive) and if these responses are associated with heavy metal accumulation in each organ or there are driven by other signals. Maize seedlings were subjected to sub-lethal concentrations of four metals (Zn, Ni, Cd and Cu) individually, and were quantified for growth, ABA level, and redox alterations in roots, mature leaves (L1,2) and young leaves (L3,4) at 14 and 21 days after sowing (DAS). The treatments caused significant increase in endogenous metal levels in all organs but to different degrees, where roots showed the highest levels. Biomass was significantly reduced under heavy metal stress. Although old leaves accumulated less heavy metal content than root, the reduction in their biomass (FW) was more pronounced. Metal exposure triggered ABA accumulation and stomatal closure mainly in older leaves, which consequently reduced photosynthesis. Heavy metals induced oxidative stress in the maize organs, but to different degrees. Tocopherols, polyphenols and flavonoids increased specifically in the shoot under Zn, Ni and Cu, while under Cd treatment they played a minor role. Under Cu and Cd stress, superoxide dismutase (SOD) and dehydroascorbate reductase (DHAR) activities were induced in the roots, however ascorbate peroxidase (APX) activity was only increased in the older leaves. Overall, it can be concluded that root and shoot organs specific responses to heavy metal toxicity are not only associated with heavy metal accumulation and they are specialized at the level of antioxidants to cope with.
Mostrar más [+] Menos [-]Neonatal exposure to a glyphosate-based herbicide alters the uterine differentiation of prepubertal ewe lambs Texto completo
2020
Alarcón, Ramiro | Rivera, Oscar E. | Ingaramo, Paola I. | Tschopp, María V. | Dioguardi, Gisela H. | Milesi, Mercedes M. | Muñoz-de-Toro, Mónica | Luque, Enrique H.
The exposure to endocrine-disrupting compounds (EDCs), such as glyphosate-based herbicides (GBHs), during early life might alter female fertility. The aim of the present study was to evaluate the effects of neonatal exposure to a GBH on sheep uterine development. To achieve this, Friesian ewe lambs were exposed to GBH (2 mg/kg of body weight/day; n = 12) or vehicle (controls; n = 10) through s.c. injections, from postnatal day (PND) 1 to PND14; on PND45, the uteri were obtained to evaluate histomorphological and molecular parameters. Morphological parameters were determined by picrosirius-hematoxylin staining. Protein expression of Ki67 (as a cell proliferation marker), p27, and molecules involved in uterine organogenetic differentiation was measured by immunohistochemistry. We also determined the mRNA expression of the IGF molecular pathway by RT-PCR. Although histomorphology was not modified, the uteri of GBH-exposed ewe lambs showed lower cell proliferation, together with higher p27 protein expression. In addition, the uteri of GBH-exposed ewe lambs showed increased gene expression of insulin-like growth factor binding protein 3 (IGFBP-3), decreased expression of ERα in the luminal (LE) and glandular (GE) epithelia and in the subepithelial stroma (SS), and lower PR expression in the LE but higher in the GE and SS. In addition, GBH treatment decreased the uterine expression of Wnt5a in the GE, of Wnt7a in the SS, of β-catenin in the LE and GE, of Hoxa10 in the SS, and of Foxa2 in the GE as compared with controls. In conclusion, neonatal exposure to GBH decreased cell proliferation and altered the expression of molecules that control proliferation and development in the uterus. All these changes might have adverse consequences on uterine differentiation and functionality, affecting the female reproductive health of sheep. GBH may be responsible for uterine subfertility, acting as an EDC.
Mostrar más [+] Menos [-]