Refinar búsqueda
Resultados 671-680 de 4,938
Short-term effect of relatively low level air pollution on outpatient visit in Shennongjia, China Texto completo
2019
Liu, Chenchen | Liu, Yuewei | Zhou, Yide | Feng, Anhui | Wang, Chunhong | Shi, Tingming
Many cities in China are currently experiencing severe air pollution due to modernization. Previous studies investigating the effects of air pollutants exposure were particularly conducted in severe air polluted area and studies in low pollution areas were sparse.To quantitatively assess the short-term effects of ambient air pollutants (PM2.5, PM10, SO2, NO2, CO and O3) on outpatient visits in low pollution area, we conducted a time-series analysis from Jan 1, 2015 to Dec 31, 2016 in Shennongjia, China. Generalized additive model (GAM) was used to evaluate the influence of PM2.5 on daily hospital outpatient visits with different lag structures. We also conducted stratified analysis to explore the association between PM2.5 concentration and outpatient visits in different seasons.In the present study, per IQR increment of PM2.5, PM10, NO2, CO and O3 were related with 1.92% (0.76%–3.09%), 1.92% (0.77%–3.07%), 2.74% (95% CI: 1.65%–3.83%), 1.89% (95% CI: 0.68%–3.10%) and 2.30% (95% CI: 0.65%–3.95%) increase on respiratory outpatient visits. Significant associations were found between PM2.5, PM10, NO2 and respiratory outpatient visits at lag0:1, lag0:2 days. The effects of PM2.5 were more evident in the cool season than in the warm season.Our study showed that short-term exposures to PM2.5, PM10, NO2, CO and O3 were related with increased risk of outpatient visits of respiratory diseases, and highlighted the adverse effect of air pollutants exposure, especially PM2.5 exposure in cool season on health in low pollution area.
Mostrar más [+] Menos [-]Effects of simulated N deposition on photosynthesis and productivity of key plants from different functional groups of alpine meadow on Qinghai-Tibetan plateau Texto completo
2019
Shen, Hao | Dong, Shikui | Li, Shuai | Xiao, Jiannan | Han, Yuhui | Yang, Mingyue | Zhang, Jing | Gao, Xiaoxia | Xu, Yudan | Li, Yu | Zhi, Yangliu | Liu, Shiliang | Dong, Quanming | Zhou, Huakun | Yeomans, Jane C.
Nitrogen (N) deposition may alter physiological process of plants in grassland ecosystem. However, little is known about the response mechanism of individual plants in alpine regions to N deposition. We conducted a field experiment, and three treatments including 0 kg Nha⁻¹year⁻¹ (CK), 8 kgNha⁻¹year⁻¹ (Low N), and 72 kg N ha⁻¹ year⁻¹ (High N) were established to simulate N deposition in alpine meadow of Qinghai-Tibetan plateau. Our objectives were to determine the influence of N deposition on photosynthesis of different functional types of herbage species in alpine meadow, and finally characterize the links of plant productivity and photosynthesis with soil nutrients. The results showed that responses of alpine plants were species-specific under N deposition. Compared with grass species Agropyron cristatum and forb species Thalictrum aquilegifolium, the sedge species Carex melanantha was much more sensitive to N deposition; a lower N load (8 kgNha⁻¹year⁻¹) can cause a negative effect on its photosynthesis and productivity. Additionally, N deposition can promote plant N uptake and significantly decreased the C (carbon)/N (nitrogen) ratio. Compared with CK and low N deposition, high N deposition inhibited the photosynthesis and growth of the forb species Thalictrum aquilegifolium and sedge species Carex melanantha. In all three functional types of herbage species, the grass species A. cristatum tended to show a much higher photosynthetic capacity and better growth potential; thus, suggesting that grass species A. cristatum will be a more adaptative alpine plants under N deposition. Our findings suggested that plant photosynthetic responses to N deposition were species-specific, low N deposition was not beneficial for all the herbage species, and N deposition may change plant composition by the differential photosynthetic responses among species in alpine grassland. Plant composition shift to grass-dorminant in alpine regions might be attributed to a much higher photosynthetic potential and N use efficiency of grass species.
Mostrar más [+] Menos [-]The three ‘B’ of fish mercury in China: Bioaccumulation, biodynamics and biotransformation Texto completo
2019
Wang, Xun | Wang, Wen-Xiong
Mercury (Hg) is a global toxic pollutant and has raised the world's attention for decades. In this study, we reviewed the fish mercury levels in China (both marine and freshwater, as well as wild and farmed) documented over the past decade and their controlling environmental and biological factors. China is the largest contributor of global Hg cycling and the largest nation for the consumption and export of fish and fish product, thus Hg level in fish becomes a critical issue for food safety and public health. In China, Hg in fish is generally accumulated at a low level, but significant geographical differences were evident and formed the “hot spots” from the north to the south. For marine fish, the east (median: 70 ng g−1 ww, range: 5.0–330 ng g−1 ww) and southeast (median: 72 ng g−1 ww, range: 0.3–329 ng g−1 ww) of China have higher total Hg concentrations than the other coastal areas. For freshwater fish, Tibetan Plateau exhibited the highest total Hg levels (median: 104 ng g−1 ww, range: 5.0–868 ng g−1 ww). Risk assessment of the exposure of low-Hg-level fish to China's population deserves more attention and detailed fish consumption advisories to specific populations are urgently needed. The biokinetic model is a useful tool to characterize the underlying processes involved in Hg accumulation by fish. The diet (Hg concentration, speciation, food quality and quantity) and growth appear to be the important factors affecting the Hg levels of fish in China. The Hg biotransformation can also make contributions to Hg speciation and overall accumulation in fish. The intestinal microbes play an important role in Hg biotransformation and the potential for minimizing Hg contamination in fish deserves further investigation.
Mostrar más [+] Menos [-]Rhizobia population was favoured during in situ phytoremediation of vanadium-titanium magnetite mine tailings dam using Pongamia pinnata Texto completo
2019
Yu, Xiumei | Kang, Xia | Li, Yanmei | Cui, Yongliang | Tu, Weiguo | Shen, Tian | Yan, Min | Gu, Yunfu | Zou, Likou | Ma, Menggen | Xiang, Quanju | Zhao, Ke | Liang, Yueyang | Zhang, Xiaoping | Chen, Qiang
Mine tailings contain toxic metals and can lead to serious pollutions of soil environment. Phytoremediation using legumes has been regarded as an eco-friendly way for the rehabilitation of tailings-laden lands but little is known about the changes of microbial structure during the process. In the present study, we monitored the dynamic change of microbiota in the rhizosphere of Pongamia pinnata during a 2-year on-site remediation of vanadium-titanium magnetite tailings. After remediation, overall soil health conditions were significantly improved as increased available N and P contents and enzyme activities were discovered. There was also an increase of microbial carbon and nitrogen contents. The Illumina sequencing technique revealed that the abundance of taxa under Proteobacteria was increased and rhizobia-related OTUs were preferentially enriched. A significant difference was discovered for sample groups before and after remediation. Rhizobium and Nordella were identified as the keystone taxa at genus rank. Functional predictions indicated that nitrogen fixation was enhanced, corresponding well with qPCR results which showed a significant increase of nifH gene copy numbers by the 2nd year. Our findings for the first time elucidated that legume phytoremediation can effectively cause microbial communities to shift in favour of rhizobia in heavy metal contaminated soil.
Mostrar más [+] Menos [-]Suspended particles potentially enhance nitrous oxide (N2O) emissions in the oxic estuarine waters of eutrophic lakes: Field and experimental evidence Texto completo
2019
Zhou, Yiwen | Xu, Xiaoguang | Han, Ruiming | Li, Lu | Feng, Yu | Yeerken, Senbati | Kang, Song | Wang, Qilin
Estuaries are considered hot spots for the production and emissions of nitrous oxide (N2O) and easily occur suspended particles (SPS), however, current understanding about the role of SPS in the N2O emissions from the oxic estuarine waters of lacustrine ecosystems is still limited. In this study, field investigations were performed in the estuaries of hypereutrophic Taihu Lake, and laboratory simulations were simultaneously conducted to ascertain the characteristics of N2O emissions with different SPS concentrations. The results showed that the N2O emission fluxes ranged from 9.75 to 118.38 μg m−2 h−1, indicating a high spatial heterogeneity for the N2O emissions from the estuaries of Taihu Lake. Although the dissolved oxygen (DO) concentrations were up to 7.85 mg L−1 in the estuarine waters, from where the N2O emissions fluxes were approximately three times that of the lake regions. Multiple regression model selected the total nitrogen (TN), SPS, and DO concentrations as the crucial factors influencing the N2O emission fluxes. Particularly for SPS, the simulation results showed that the N2O concentrations increased gradually with the increase in the SPS concentrations of an oxic water column containing 4 mg L−1 of NO3−-N, indicating that a high SPS concentration can accelerate the N2O emissions. It was related to the change of denitrifying bacteria population in the SPS, as evidenced by its significantly positive correlation with N2O emissions (p < 0.01). Our findings will draw attentions to the role of SPS playing in the N2O productions and emissions in eutrophic lakes, and its effect on nitrogen cycle should be considered in the future study.
Mostrar más [+] Menos [-]The pollution level of the blaOXA-58 carbapenemase gene in coastal water and its host bacteria characteristics Texto completo
2019
Xin, Rui | Zhang, Kai | Wu, Nan | Zhang, Ying | Niu, Zhiguang
This paper investigated 10 carbapenemase genes and selected the hosts of these genes in the estuary of Bohai Bay. The results showed that the OXA-58 producer accounted for a large percentage of carbapenem resistant bacteria in the sampling points, whereas the VIM, KPC, NDM, IMP, GES, OXA-23, OXA-24, OXA-48 and OXA-51 producers were not detected in the study. In addition, 9 bacterial genera with 100% identical blaOXA₋₅₈ sequences, including Pseudomonas, Rheinheimera, Stenotrophomonas, Shewanella, Raoultella, Vibrio, Pseudoalteromonas, Algoriphagus, Bowmanella and Thalassospira, were isolated from seawater. It is suggested that the host of blaOXA₋₅₈ gene were varied and many kinds of them could survive in the seawater. Moreover, we preformed the quantitative RT-PCR and the result shown the abundance of blaOXA₋₅₈ fluctuated between 2.8×10⁻⁶ copies/16S and 2.46×10⁻⁴ copies/16S, which was of the same order of magnitude as some common antibiotic resistance genes in environment. Furthermore, the variation trend of blaOXA₋₅₈ gene suggested that pollution discharge and horizontal gene transfer could contribute to the increase of the gene in coastal area.
Mostrar más [+] Menos [-]Transfer of pyrrolizidine alkaloids between living plants: A disregarded source of contaminations Texto completo
2019
Selmar, Dirk | Wittke, Carina | Beck-von Wolffersdorff, Iris | Klier, Bernhard | Lewerenz, Laura | Kleinwächter, Maik | Nowak, Melanie
To elucidate the origin of the wide-spread contaminations of plant derived commodities with various alkaloids, we employed co-cultures of pyrrolizidine alkaloid (PA) containing Senecio jacobaea plants with various alkaloid free acceptor plants. Our analyses revealed that all plants grown in the vicinity of the Senecio donor plants indeed contain significant amounts of the PAs, which previously had been synthesized in the Senecio plants. These findings illustrate that typical secondary metabolites, such as pyrrolizidine alkaloids, are commonly transferred and exchanged between living plants. In contrast to the broad spectrum of alkaloids in Senecio, in the acceptor plants nearly exclusively jacobine is accumulated. This indicates that this alkaloid is exuded specifically by the Senecio roots. Although the path of alkaloid transfer from living donor plants is not yet fully elucidated, these novel insights will extend and change our understanding of plant-plant interactions and reveal a high relevance with respect to the widespread alkaloidal contaminations of plant-derived commodities. Moreover, they could be the basis for the understanding of various so far not fully understood phenomena in cultivation of various crops, e.g. the beneficial effects of crop rotations or the co-cultivation of certain vegetables.
Mostrar más [+] Menos [-]Fine particulate matter exposure and medication dispensing during and after a coal mine fire: A time series analysis from the Hazelwood Health Study Texto completo
2019
Limited research has examined the impacts of coal mine fire smoke on human health. The aim of this study was to assess the association between prolonged smoke PM₂.₅ exposure from a brown coal mine fire that burned over a seven week period in 2014 and medications dispensed across five localities in South-eastern Victoria, Australia. Spatially resolved PM₂.₅ concentrations were retrospectively estimated using a dispersion model coupled with a chemical transport model. Data on medications dispensed were collected from the national Pharmaceutical Benefits Schedule database for 2013–2016. Poisson distributed lag time series analysis was used to examine associations between daily mine fire-related PM₂.₅ concentrations and daily counts of medications dispensed for respiratory, cardiovascular or psychiatric conditions. Factors controlled for included: seasonality, long-term trend, day of the week, maximum ambient temperature and public holidays. Positive associations were found between mine fire-related PM₂.₅ and increased risks of medications dispensed for respiratory, cardiovascular and psychiatric conditions, over a lag range of 3–7 days. A 10 μg/m³ increase in coal mine fire-related PM₂.₅ was associated with a 25% (95%CI 19–32%) increase in respiratory medications, a 10% (95%CI 7–13%) increase in cardiovascular medications and a 12% (95%CI 8–16%) increase in psychiatric medications dispensed. These findings have the potential to better prepare for and develop more appropriate public health responses in the event of future coal mine fires.
Mostrar más [+] Menos [-]Water management impacts the soil microbial communities and total arsenic and methylated arsenicals in rice grains Texto completo
2019
The bioavailability of the metalloid arsenic (As) in paddy soil is controlled by microbial cycling of As and other elements such as iron (Fe) and sulfur (S), which are strongly influenced by water management in paddy fields. In this study, we evaluated how water management affects As bioavailability by growing rice plants in a geogenic As-contaminated soil. We determined As speciation in soil porewater and the diversity of the associated microbial community. Continuous flooding enhanced the release of Fe and As and increased arsenite (As(III)) and methylated As species concentrations in the rice grain compared with aerobic treatment. Total inorganic and organic As in the grain was 84% and 81% lower, respectively, in the aerobic treatment compared with the continuous flooding treatment. The amounts of Fe(III)-reducing bacteria (FeRB) increased in the flooded rhizosphere soil. The abundance of FeRB in the soil correlated with the dissolution of Fe and As. Among the As-transformation genes quantified, the aioA gene for As(III) oxidation and arsM gene for As(III) methylation were most abundant. The arsM copy number correlated positively with the levels of dsrB (dissimilatory (bi) sulfite reductase β-subunit), suggesting that dissimilatory sulfate-reducing bacteria (SRB) may play an important role in dimethylarsenate (DMAs(V)) production in soil. Our results show that decreased populations of rhizosphere FeRB and SRB contributed to a lower bioavailability of As, and decreased production of methylated arsenicals under oxic conditions.
Mostrar más [+] Menos [-]Thallium contamination in farmlands and common vegetables in a pyrite mining city and potential health risks Texto completo
2019
Liu, Juan | Li, Nuo | Zhang, Weilong | Wei, Xudong | Tsang, Daniel C.W. | Sun, Yubing | Luo, Xuwen | Bao, Zhi'an | Zheng, Chouyu | Wang, Jin | Xu, Guoliang | Hou, Liping | Chen, Yongheng | Feng, Yuexing
Thallium (Tl) is a trace metal of severe toxicity. Its health concerns via consumption of contaminated vegetables have often been overlooked or underestimated. This study was designed to gain insight into the actual level and distribution characteristics of Tl and metal (loid)s (Pb, Cd, Cr, Sb, Mn, Cu, Zn, Ni, and Co) in agricultural soils and common vegetables cultivated in different zones (upstream, midstream, and downstream) of a densely populated residential area in a typical mine city, which has been open-pit exploiting Tl-bearing pyrite minerals since 1960s. The results show that most of the agricultural soils exhibit contaminated levels of Tl, with Tl contents (upstream: 1.35–4.31 mg/kg, midstream: 2.43–5.19 mg/kg, and downstream: 0.65–2.33 mg/kg) mostly exceeding the maximum permissible level (MPL) for agricultural land use (1 mg/kg). Sequential extraction procedure indicates that even Tl is predominantly retained in the residual fraction, significant levels of Tl are still present in the geochemically mobile fractions. Besides, metals like Cu, Cd, Mn, and Co are mostly distributed in the labile fractions. Almost all metal (loid)s in edible parts of the vegetables exceed their corresponding MPL for consumption. The chronic daily intake (CDI) and hazard quotient (HQ) values calculated for inhabitants at different ages indicate non-negligible Tl risks via consumption of local vegetables, especially for children. Therefore, it is critical to establish effective measures for hazardous waste management and enforceable regulations in Tl-polluted area to mitigate potential severe impacts of Tl on human health through food chain.
Mostrar más [+] Menos [-]