Refinar búsqueda
Resultados 681-690 de 739
The role of zooplankton in DDT biomagnification in a pelagic food web of Lake Maggiore (Northern Italy)
2010
Bettinetti, Roberta | Galassi, Silvana | Guzzella, Licia | Quadroni, Silvia | Volta, Pietro
Background In the present study, we report the analytical results of pp′DDT, pp′DDE and pp′DDD determination in lake water, plankton and zooplanktivorous fish of Lake Maggiore (Northern Italy), rather recently polluted by DDT of industrial origin, in order to understand the bottom-up pollution transfer among the abiotic and biotic components of the lake ecosystem. Materials and methods Fourteen water sampling campaigns were carried out from March 2003 to January 2009 in the water column of the deepest point (Ghiffa) of Lake Maggiore. Suspended and dissolved pollutants were determined separately. Three sampling campaigns were carried out from July 2008 to January 2009 for zooplankton and pelagic fish, and DDT residues were analysed by HRGC coupled with ECD and MS. Moreover, food items were detected in fish stomachs. Results and discussion Starting from 2007, the DDT contamination along the water column became rather homogeneous, probably because no flooding or other relevant hydrological events occurred; although steady-state condition should be expected, lipid normalised concentrations of pp′DDE and pp′DDD in zooplankton exceeded the levels of the same compounds in zooplanktivorous fishes. Conclusion As this finding represents a thermodynamic paradox since bioaccumulative pollutant concentrations are expected to increase along the trophic chain, it was supposed that the abiotic and biotic lake components were not in a steady-state condition in Lake Maggiore.
Mostrar más [+] Menos [-]Characterization of phenol degradation by high-efficiency binary mixed culture
2010
Zeng, Hong-Yan | Jiang, He | Xia, Kui | Wang, Ya-Ju | Huang, Yan
Background, aim, and scope Two new high phenol-degrading strains, Micrococcus sp. and Alcaligenes faecalis JH 1013, were isolated. The two isolates could grow aerobically in mineral salts medium containing phenol as a sole carbon source at concentration of 3,000 mg L⁻¹. It was found that the binary mixed culture of the two isolates possessed good potential for phenol removal. Material and methods Phenol biodegradation using the binary mixed culture of the two isolates was studied. The optimal conditions were determined to be temperature 32°C, pH 7.0, inoculum size 10.0%, and agitation rate 150 rpm in the synthetic wastewater. In addition, the kinetics of the cell growth and phenol degradation by the binary mixed culture were also investigated using Haldane model over a wide range of initial phenol concentrations from 20 to 2,400 mg L⁻¹. Results The experimental data indicated that the binary mixed culture had pretty high phenol degradation potential, which could thoroughly degrade the phenol in the synthetic wastewater containing phenol 2,400 mg L⁻¹ within 72 h under aerobic condition. Under the optimal conditions, the phenol concentration was reduced speedily from 1,000 to below 0.28 mg L⁻¹ in the presence of the binary mixed culture, and the phenol degradation rate reached 99.97% after 16 h. It was well below the standard value 0.28 mg L⁻¹ as described by Chinese Environmental Protection Agency. It was clear that the Haldane kinetic model adequately described the dynamic behavior of phenol degradation by the binary mixed culture with kinetic constants of q max = 0.45 h⁻¹, K sq = 64.28 mg L⁻¹, and K iq = 992.79 mg L⁻¹. The phenol concentration to avoid substrate inhibition had been inferred theoretically to be 252.62 mg L⁻¹. Conclusions Phenol, as the only carbon source, could be degraded by the binary mixed culture at high initial phenol concentrations. Phenol exhibited inhibitory behavior, and the growth kinetics of the binary mixed culture could be correlated well by the simple Haldane's inhibitory model. The kinetics parameters were invariably required for the design and simulation of batch and continuous bioreactor treating phenolic wastewaters.
Mostrar más [+] Menos [-]Whole effluent assessment of industrial wastewater for determination of bat compliance
2010
Gartiser, Stefan | Hafner, Christoph | Hercher, Christoph | Kronenberger-Schäfer, Kerstin | Paschke, Albrecht
Background, aim and scope The applicability of the Whole Effluent Assessment concept for the proof of compliance with the “best available techniques” has been analysed with paper mill wastewater from Germany by considering its persistency (P), potentially bio-accumulative substances (B) and toxicity (T). Materials and methods Twenty wastewater samples from 13 paper mills using different types of cellulose fibres as raw materials have been tested in DIN or ISO standardised bioassays: the algae, daphnia, luminescent bacteria, duckweed (Lemna), fish-egg and umu tests with lowest ineffective dilution (LID) as test result. The potentially bio-accumulative substances (PBS) were determined by solid-phase microextraction and referred to the reference compound 2,3-dimethylnaphthalene. Usually, a primary chemical-physical treatment of the wastewater was followed by a single or multi-stage biological treatment. One indirectly discharged wastewater sample was pre-treated biologically in the Zahn-Wellens test before determining its ecotoxicity. Results No toxicity or genotoxicity at all was detected in the acute daphnia and fish egg as well as the umu assay. In the luminescent bacteria test, moderate toxicity (up to LIDlb = 6) was observed. Wastewater of four paper mills demonstrated elevated or high algae toxicity (up to LIDA = 128), which was in line with the results of the Lemna test, which mostly was less sensitive than the algae test (up to LIDDW = 8). One indirectly discharged wastewater sample was biodegraded in the Zahn-Wellens test by 96% and was not toxic after this treatment. Low levels of PBS have been detected (median 3.27 mmol L⁻¹). The colouration of the wastewater samples in the visible band did not correlate with algae toxicity and thus is not considered as its primary origin. Further analysis with a partial wastewater stream from thermomechanically produced groundwood pulp (TMP) revealed no algae or luminescent bacteria toxicity after pre-treatment of the sample in the Zahn-Wellens test (chemical oxygen demand elimination 85% in 7 days). Thus, the algae toxicity of the respective paper mill cannot be explained with the TMP partial stream; presumably other raw materials such as biocides might be the source of algae toxicity. Discussion Comparative data from wastewater surveillance of authorities confirmed the range of ecotoxicity observed in the study. Wastewater from paper mills generally has no or a moderate ecotoxicity (median LID 1 and 2) while the maximum LID values, especially for the algae and daphnia tests, are considerably elevated (LIDA up to 128, LIDD up to 48). Conclusions Wastewater from paper mills generally is low to moderately ecotoxic to aquatic organisms in acute toxicity tests. Some samples show effects in the chronic algae growth inhibition test which cannot be explained exclusively with colouration of the samples. The origin of elevated algae ecotoxicity could not be determined. In the algae test, often flat dose-response relationships and growth promotion at higher dilution factors have been observed, indicating that several effects are overlapping. Recommendations and perspectives At least one bioassay should be included in routine wastewater control of paper mills because the paper manufacturing industry is among the most water consuming. Although the algae test was the most sensitive test, it might not be the most appropriate test because of the complex relationship of colouration and inhibition and the smooth dose-effect relationship or even promotion of algae growth often observed. The Lemna test would be a suitable method which also detects inhibitors of photosynthesis and is not disturbed by wastewater colouration.
Mostrar más [+] Menos [-]Behaviour and dynamics of di-ammonium phosphate in bauxite processing residue sand in Western Australia—I. NH₃ volatilisation and residual nitrogen availability
2010
Chen, C. R | Phillips, I. R | Wei, L. L | Xu, Z. H
Background, aim and scope Australia is the largest producer of bauxite in the world, with an annual output of approximately 62 million metric dry tons in 2007. For every tonne of alumina, about 2 tonnes of highly alkaline and highly saline bauxite-processing residue are produced. In Western Australia, Alcoa World Alumina, Australia (Alcoa) produces approximately 15 MT of residue annually from its refineries (Kwinana, Pinjarra and Wagerup). The bauxite-processing residue sand (BRS) fraction represents the primary material for rehabilitating Alcoa's residue disposal areas (RDAs). However, the inherently hostile characteristics (high alkalinity, high salinity and poor nutrient availability) of BRS pose severe limitations for establishing sustainable plant cover systems. Alcoa currently applies 2.7 t ha⁻¹ of di-ammonium phosphate ((NH₄)₂HPO₄; DAP)-based fertiliser as a part of rehabilitation of the outer residue sand embankments of its RDAs. Limited information on the behaviour of the dominant components of this inorganic fertiliser in highly alkaline BRS is currently available, despite the known effects of pH on ammonium (NH₄) and phosphorus (P) behaviour. The aim of this study was to quantify the effects of pH on NH₃ volatilisation and residual nitrogen (N) in BRS following DAP applications. Methods The sponge-trapping and KCl-extraction method was used for determining NH₃ volatilisation from surface-applied DAP in samples of BRS collected from each of Alcoa's three Western Australia Refineries (Kwinana, Pinjarra, Wagerup) under various pH conditions (pH 4, 7, 9 and 11). Following cessation of volatilisation, the residual N was extracted from BRS using 2 M KCl and concentrations of NH ₄ ⁺ -N and NO ₃ ⁻ -N were determined by flow injection analysis. Results The quantities of NH₃ volatilised increased dramatically as the pH increased from 4 to 11. Much of the N lost as NH₃ (up to 95.2%) occurred within a short period (24 h to 7 days), particularly for the pH 9 and 11 treatments. Concentrations of residual NH ₄ ⁺ -N recovered in DAP-treated BRS at the end of the experiment decreased with increasing pH. This finding was consistent with increasing loss of N via volatilisation as pH increased. The concentration of NO ₃ ⁻ -N was very low due to no nitrification in BRS. Discussion The pH was a key driver for NH₃ volatilisation from DAP-treated BRS and primarily controlled N dynamics in BRS. Results indicate that NH₄ not adsorbed by BRS was highly susceptible to volatilisation. The likely lack of nitrifying bacteria did not allow conversion of ammonium to nitrate, thereby further exacerbating the potential for loss via volatilisation Conclusions It was demonstrated that the pH is the key factor controlling the loss of inorganic N from BRS. Although volatilisation was considerably lower at pH 4, achieving this pH reduction in the field is not possible at present. Findings from this study highlight the need to better understand which forms of N fertiliser are most suitable for use in highly alkaline BRS. Recommendation and perspectives Although pH reduction is the most likely means of stopping NH₃ volatilisation in BRS, it is economically and operationally unfeasible to add sufficient acidity for adequately lowering pH in the BRS for revegetation. More attention on forms of fertilisers more suitable to highly alkaline, microbially inert soil conditions appears to be warranted.
Mostrar más [+] Menos [-]Biomonitoring perfluorinated compounds in Catalonia, Spain: concentrations and trends in human liver and milk samples
2010
Kärrman, Anna | Domingo, José L. | Llebaria, Xavier | Nadal, Martí | Bigas, Esther | van Bavel, Bert | Lindström, Gunilla
Background, aim and scope Perfluorinated compounds (PFCs) are global environmental pollutants that bioaccumulate in wildlife and humans. Laboratory experiments have revealed toxic effects such as delayed development, humoral suppression, and hepatotoxicity. Although numerous human blood levels have been reported, little is known about distribution in the human body. Knowledge about PFC distribution and accumulation in the human body is crucial to understanding uptake and subsequent effects as well as to conduct risk assessments. The present study reports PFC levels in human liver and breast milk from a general population living in Catalonia, Spain. Liver and milk levels are compared to previously reported levels in blood from the same geographic area as well as to other existing reports on human liver and milk levels in other countries. Materials and methods Human liver (n = 12) and milk (n = 10) samples were collected in 2007 and 2008 in Catalonia, Spain. Liver samples were taken postmortem from six males and six females aged 27-79 years. Milk samples were from healthy primipara women (30-39 years old). Both liver and milk were analyzed by solid-phase extraction and ultra-performance liquid chromatography tandem mass spectrometry. Results Six PFCs were detected in liver, with perfluorooctanesulfonate (PFOS, 26.6 ng/g wet weight) being the chemical with the highest mean concentration. Other PFCs such as perfluorohexanesulfonate (PFHxS), perfluorooctanoic acid (PFOA), and acids with chain lengths up to C11 were also detected, with mean levels ranging between 0.50 and 1.45 ng/g wet weight. On the other hand, PFOS and PFHxS were the only PFCs detected in human milk, with mean concentrations of 0.12 and 0.04 ng/mL, respectively. Discussion While milk concentrations were similar to reported levels from other countries, liver samples contained more PFCs above quantification limits and higher PFOS concentrations compared to the only two other reports found in the literature. Differences between the results of the present study and those concerning previous investigations can be due to declining levels of some PFCs, which have been reported for the USA. The relationship between PFC concentrations in human liver, milk, and blood was assessed using blood concentrations previously determined in Catalonia. Those levels resulted in liver/serum ratios of 1.7:1, 1.4:1, and 2.1:1 for PFOS, perfluorodecanoic acid, and perfluoroundecanoic acid, respectively. Accumulation in liver is suggested for PFOS and the perfluorocarboxylic acids with carbon chain lengths C9, C10, and C11. For PFOA and PFHxS, fivefold and 14-fold higher concentrations, respectively, were seen in serum as compared to liver. The mean concentration of PFOS and PFHxS in milk was only 0.8% and 0.6% of the reported mean serum level, respectively. Conclusions The results of the present study show that several PFCs could be detected in human liver samples of subjects living in Tarragona. Concerning human milk, the mechanism by which PFCs are transferred from mother's blood to breast milk is still unclear. Considering that PFCs are strongly bound to the protein fraction in blood, the possibility of PFCs entering the milk and accumulating to levels observed in maternal plasma is limited. Recommendations and perspectives Interestingly, the potential accumulation difference for PFCs with different chain lengths might be of great importance for risk assessment. Continuing studies on the distribution of different PFCs in human tissue are therefore justified.
Mostrar más [+] Menos [-]Mercury human exposure through fish consumption in a reservoir contaminated by a chlor-alkali plant: Babeni reservoir (Romania)
2010
Bravo, Andrea Garcia | Loizeau, Jean-Luc | Bouchet, Sylvain | Richard, Alexandre | Rubin, Jean-François | Ungureanu, Viorel-Gheorge | Amouroux, David | Dominik, Janusz
PURPOSE: Chlor-alkali plants are one of the most important point sources of mercury to aquatic environment. The problem of Hg contamination has been studied in a region, Rm Valcea (Romania), impacted by the wastewater discharge of a chlor-alkali plant. The purpose of the present study is to evaluate the current status of mercury pollution in the Babeni reservoir (Olt River) and the exposure of local population via fish consumption to mercury originating from the chlor-alkali plant. METHODS: Sediments were collected from Valcea, Govora and Babeni reservoirs. Grain size distribution, organic content and total mercury (THg) concentrations were analysed in sediments. Fish were purchased from local anglers, and the scalp hair was collected from volunteers. THg in sediment, fish and hair samples was determined using an atomic absorption spectrophotometer for Hg determination. Monomethylmercury (MMHg) was analysed in the muscle and liver tissues by species-specific isotope dilution and capillary gas chromatography hyphenated to inductively coupled plasma mass spectrometer. RESULTS: High mercury concentrations were found in the sediments and in fish from Babeni reservoir, with a median of 2.1 mg/kg (IQR = 3.2) in sediments and a mean value of 1.8 ± 0.8 mg/kg_ww in fish muscle. MMHg concentrations in fish were well above the WHO guidelines for fish consumption. Local population consuming fish from the Babeni reservoir had THg concentrations in hair significantly higher than those consuming fish from upstream reservoirs and/or from the shops and reached a median value of 2.5 mg/kg (IQR = 3.6). CONCLUSIONS: The remnant pollution in the fish of this reservoir, and probably many other lakes and reservoirs receiving Hg polluted wastewater, represents a considerable health risk for the local fish consumers.
Mostrar más [+] Menos [-]Distribution pattern of PCBs, HCB and PeCB using passive air and soil sampling in Estonia
2010
Roots, Ott | Roose, Antti | Kull, Ain | Holoubek, Ivan | Cupr, Pavel | Klánová, Jana
Background, aim, and scope Passive air sampling survey of the Central and Eastern Europe was initiated in 2006. This paper presents data on toxic organic compounds such as polychlorinated biphenyls (PCB 28, 52, 101, 118, 153, 138, and 180), hexachlorobenzene (HCB), pentachlorobenzene (PeCB), hexachlorocyclohexane compounds (α-HCH, β-HCH,γ-HCH, δ-HCH), and dichloro-diphenyl-trichloroethane (DDT) compounds (p,p′DDE, p,p′DDD, p,p′DDT, o,p′DDE, o,p′DDD, and o,p′DDT) determined in ambient air and soil samples collected at Estonian monitoring stations. Materials and methods Ambient air and soil samples were collected in five sites in northern Estonia. Passive air samplers were deployed four times over 4-week periods covering the period April-August 2006. Samples were analyzed using gas chromatography-electron capture detector (HP 5890) supplied with a Quadrex fused silica column 5% Ph for organochlorine pesticides (OCPs). Local ground-boundary wind field was modeled for each monitoring station and sampling period on the basis of observed wind data from the nearest meteorological station with a high quality of time series and compared with upper air (at 850- and 500-hPa level) data from Tallinn-Harku aerological station. Results Median levels of PCB at Estonian stations varied between 3 and 9 ng/filter, although the maximum in Kohtla-Järve reached as high as 28 ng/filter. Sampling rates about 3.5 m³/day were determined by empirical measurements, making approximately 100 m³ for a 28-day sampling cycle. In general, OCP levels in soil were at the limit of detection, except Tallinn site and Muuga Port affected mainly by local sources. However, the atmospheric PCB concentrations are in agreement with the soil analyses where highest PCB levels were found in the soil sample for Tallinn (12.0 ng/g dry weight). For HCB, the atmospheric distribution was quite uniform, with the background levels sometimes higher than the urban ones. HCB and PeCB concentrations were very low in May and June when meridional airflow from the southern sector dominated, and concentrations were slightly higher in July and August, most probably due to revolatilization of adsorbed HCB (with PeCB impurities) from former industrial applications during the summer month and possibly enhanced by forest fires in Russia. Also, the highest summary HCH and DDT levels (63.5 and 2.5 ng/filter, respectively) in Estonian monitoring stations were determined at the end of July and beginning of August when the ground-boundary wind direction was from NE with relatively high speed (4-7 m/s). The highest DDT levels in ambient air (3.5 ng/filter) were determined in the spring samples. For DDT and HCH, long-range atmospheric transport clearly dominates persistent OCP, atmospheric input to Estonia as well as for the Scandinavian countries. The DDE/DDT ratio was >1, indicating no fresh input. Discussion The passive air sampling demonstrates uniform distribution of OCPs. In the regional context, there is no indication of increased levels of concentrations of OCPs in the industrial Northeast Estonia where the oil shale processing causes certain pollution impacts. Though the passive sampling does not apply for monitoring of short-term fluxes, the method is capable of reflecting background levels in long-term prospective for potential effect on human health due to long-term exposition of OCPs. Conclusions PCB and its congeners, HCB, PeCB, HCH, and DDT were very low in Estonia. None of the persistent organochlorine pesticides have ever been produced in Estonia, and as of today, all old OCP stocks in the country have been destroyed. Highest concentrations could be expected in March and April when southwestern airflow is still strong and dominant, but air humidity is lower and deposition takes place far from the place of origin of OCPs. In summer, the share of locally formed organic compounds increases and deposition depends strongly on weather conditions. In some cases in Tallinn and Muuga where local anthropogenic impact occurs, HCB and PeCB stem from revolatilization of industrial application. Recommendations and perspectives The passive air sampling could be employed more widely to explore long-term human exposure to OCP deposition and assess potential health risks. The survey based on passive air sampling could be extended from Central and Eastern Europe to other European regions to get methodically adjusted cross-European data coverage. Based on the results of the survey, the Lahemaa reference station is a feasible option to represent background monitoring of persistent organic pollutants.
Mostrar más [+] Menos [-]A novel method using sedimentary metals and GIS for measuring anthropogenic change in coastal lake environments
2010
Olmos, Marco Antonio | Birch, Gavin F.
Background, aim and scope A new method using sedimentary metals and geographic information system as indicators for assessing temporal and spatial anthropogenic change in estuaries has been applied to a large coastal lake (Lake Macquarie) in New South Wales, Australia. Materials, methods and results Two vintages of data (1975 and 2003) on surficial sediment metal (Cd, Cu, Pb and Zn) concentrations combined with ²¹⁰Pb core profiles were used to determine past changes in sediment quality and to predict possible future relaxation rates for the entire lake area in response to change in anthropogenic pressure. Sediment cores showed distinct vertical profiles; sedimentation rates in the northern part of the lake were consistent (14 mm year⁻¹) over the 55-year period investigated. Discussion and conclusions Surficial metal concentrations were highest in the 1975 sediment than in the 2003 samples, with the northern part of Lake Macquarie having much greater metal concentrations than the rest of the lake. Past and future declining sedimentary metal concentrations in the northern part of the lake were expected due to the closure of a nearby Pb-Zn smelter; however, possible increases in Cu in the south of the lake to the year 2020 were surprising. The new method presented in this study can assist estuary managers by providing data on past, present and future conditions, which are essential in making informed decisions for the improvement of estuarine systems.
Mostrar más [+] Menos [-]Variation of airborne bacteria and fungi at Emperor Qin's Terra-Cotta Museum, Xi'an, China, during the “Oct. 1” Gold Week Period of 2006
2010
Chen, Yiping | Cui, Ying | Dong, Jun-Gang
Background, aim, and scope To stimulate the national economy, a so-called “gold week” comprising May Day and National Day has been put in force by the government, and the first golden-week holiday began on October 1, 1999. Statistical data show that about 15,000 visitors were received each day by Emperor Qin's Terra-Cotta Museum during just such a gold week period. To evaluate the effects of tourism on indoor air, airborne samples were collected by the sedimentation plate method for 5 min during the “Oct. 1” gold week period of 2006, and both composition and changes of airborne bacteria and fungi in indoor/outdoor air in the museums were investigated. Materials and methods Airborne microbes were simultaneously collected by means of gravitational sedimentation on open Petri dishes. Three parallel samples were collected at the same time each day, and samples were subsequently incubated in the lab. Microbiology media were prepared before each experiment by a professional laboratory. Concentrations were calculated and presented as average data of colony-forming units per cubic meter of air (CFU/m³). Results The results show that (1) 13 bacterial genera and eight genera of fungi were identified from indoor and outdoor air at Emperor Qin's Terra-Cotta Museum during “Oct. 1” gold week in 2006. The bacterial groups occupied 61%, the fungi groups occupied 36%, and others occupied 3% of the total number of isolated microorganism genera. (2) As for the comparison of indoor and outdoor samples, the average concentrations of fungi were higher during the afternoon (13:00) than for the morning (09:00). The average concentrations of bacteria in indoor air were higher during the afternoon (13:00) than for the morning (9:00), and in outdoor air, they were lower during the afternoon (13:00) than for the morning (9:00). (3) The average concentrations of five dominant groups of bacteria and three dominant groups of fungi were higher during the afternoon (13:00) than for the morning (9:00) in the indoor air, but the average concentrations of fungi were higher and those of bacteria were lower during the afternoon than for the morning, for outdoor air. (4) As for the comparison of indoor samples, the bacterial daily concentrations and fungal daily concentrations were higher during the afternoon (13:00) than those for the mornings (9:00) over the 10 days. For the comparison of outdoor samples, the bacterial concentration was lower, and the fungal concentrations were higher during the afternoon (13:00) than those for the morning (9:00) over the 10 days. Discussion The results also show that the numbers of airborne bacteria and fungi had a daily character in indoor air and were higher in the afternoon. The airborne microbe concentrations were found to be similar to residential indoor values from other reports; the indoor museum maximum of microbial concentrations was 90 CFU/m³ and did not exceed the Chinese indoor bioaerosol guideline. However, microorganisms may fall on the surface of display items as a result of particle sedimentation and would, as such, be capable of degrading objects by way of their secretions, e.g., enzymes and organic acids. Therefore, the right steps should be taken to prevent any deterioration in the quality of displayed artifacts. Conclusions The results show that museum air was affected by human activity; therefore, it is imperative that the number of visitors be strictly limited and that windows be opened regularly to avoid air pollution. Recommendations and perspectives The data provide a significant scientific basis for indoor air quality control and museum scientific management. It is recommended that the number of visitors be strictly limited.
Mostrar más [+] Menos [-]A sorption kinetics model for arsenic adsorption to magnetite nanoparticles
2010
Shipley, Heather J | Yean, Sujin | Kan, Amy T | Tomson, Mason B
Introduction Arsenic is a well known water contaminant that causes toxicological and carcinogenic effects. In this work magnetite nanoparticles were examined as possible arsenic sorbents. The objective of this work was to develop a sorption kinetics model, which could be used to predict the amount of arsenic adsorbed by magnetite nanoparticles in the presence of naturally occurring species using a first-order rate equation, modified to include adsorption, described by a Langmuir isotherm. Discussion Arsenate and arsenite adsorption to magnetite nanoparticles was studied, including the effect of naturally occurring species (sulfate, silica, calcium magnesium, dissolved organic matter, bicarbonate, iron, and phosphate) on adsorption. Conclusion The model accurately predicts adsorption to magnetite nanoparticles used in a batch process to remove arsenic from spiked Houston, TX tap water, and contaminated Brownsville, TX groundwater.
Mostrar más [+] Menos [-]