Refinar búsqueda
Resultados 701-710 de 5,149
Use of resources and microplastic contamination throughout the life cycle of grunts (Haemulidae) in a tropical estuary Texto completo
2018
Silva, José D.B. | Barletta, Mario | Lima, André R.A. | Ferreira, Guilherme V.B.
The distribution, feeding ecology and microplastic contamination were assessed in different ontogenetic phases of Haemulidae species inhabiting the Goiana Estuary, over a seasonal cycle. Pomadasys ramosus and Haemulopsis corvinaeformis are estuarine dependent species that use habitats with specific environmental conditions each season. Pomadasys ramosus was found in the upper and middle estuaries during the rainy season, when salinity showed the lowest values. Haemulopsis corvinaeformis was found in the lower estuary during the dry season, when salinity increased in the estuary. Juveniles of P. ramosus are zooplanktivores, feeding mainly on calanoid copepods. Sub-adults and adults are zoobenthivores, feeding on invertebrates associated to the bottom, mainly Polychaeta. Juveniles of H. corvinaeformis were not found in the main channel, but sub-adults and adults showed a zoobenthivore habit, feeding mainly on Anomalocardia flexuosa (Mollusca: Bivalvia). Dietary shifts along the life cycle and the spatio-temporal relationship between their distribution and the availability of microplastics along the estuary seem to have a strong influence in the ingestion of microfilaments. The highest average ingestion of microfilaments by P. ramosus coincided with the peak of ingestion of Polychaeta by sub-adults in the upper estuary during the late rainy season. For H. corvinaeformis the highest ingestion of microfilaments coincided with the peak of ingestion of A. flexuosa by adults in the lower estuary during the late dry season. Such contamination might be attributed to the time when these phases shifted to a more diverse diet and began to forage on benthic invertebrates. Research on microplastic contamination must consider species-specific behaviour, since the intake of microplastics is dependent on patterns of distribution and trophic guild within fish assemblages.
Mostrar más [+] Menos [-]Polycyclic Aromatic Hydrocarbons (PAHs) in inland aquatic ecosystems: Perils and remedies through biosensors and bioremediation Texto completo
2018
Behera, Bijay Kumar | Das, Abhishek | Sarkar, Dhruba Jyoti | Weerathunge, Pabudi | Parida, Pranaya Kumar | Das, Basantakumar | Thavamani, Palanisami | Ramanathan, Rajesh | Bansal, Vipul
Polycyclic Aromatic Hydrocarbons (PAHs) are among the most ubiquitous environmental pollutants of high global concern. PAHs belong to a diverse family of hydrocarbons with over one hundred compounds known, each containing at least two aromatic rings in their structure. Due to hydrophobic nature, PAHs tend to accumulate in the aquatic sediments, leading to bioaccumulation and elevated concentrations over time. In addition to their well-manifested mutagenic and carcinogenic effects in humans, they pose severe detrimental effects to aquatic life. The high eco-toxicity of PAHs has attracted a number of reviews, each dealing specifically with individual aspects of this global pollutant. However, efficient management of PAHs warrants a holistic approach that combines a thorough understanding of their physico-chemical properties, modes of environmental distribution and bioaccumulation, efficient detection, and bioremediation strategies. Currently, there is a lack of a comprehensive study that amalgamates all these aspects together. The current review, for the first time, overcomes this constraint, through providing a high level comprehensive understanding of the complexities faced during PAH management, while also recommending future directions through potentially viable solutions. Importantly, effective management of PAHs strongly relies upon reliable detection tools, which are currently non-existent, or at the very best inefficient, and therefore have a strong prospect of future development. Notably, the currently available biosensor technologies for PAH monitoring have not so far been compiled together, and therefore a significant focus of this article is on biosensor technologies that are critical for timely detection and efficient management of PAHs. This review is focussed on inland aquatic ecosystems with an emphasis on fish biodiversity, as fish remains a major source of food and livelihood for a large proportion of the global population. This thought provoking study is likely to instigate new collaborative approaches for protecting aquatic biodiversity from PAHs-induced eco-toxicity.
Mostrar más [+] Menos [-]Health risk assessment of haloacetonitriles in drinking water based on internal dose Texto completo
2018
Zhang, Ying | Han, Xuemei | Niu, Zhiguang
To estimate the health risk of haloacetonitriles in different kinds of drinking water, the concentrations of haloacetonitriles in tap water, boiled water and direct drinking water were detected. The physiologically based pharmacokinetic (PBPK) model was used to calculate internal dose in the human body for haloacetonitriles through ingestion, and the probability distributions of the non-carcinogenic risk of haloacetonitriles for human via drinking water were assessed. This study found that the mean concentrations of dichloroacetonitrile (DCAN) in tap water, boiled water and direct drinking water were 0.955 μg/L, 0.207 μg/L and 0.127 μg/L, and those of dibromoacetonitrile (DBAN) were 0.221 μg/L, 0.104 μg/L, 0.089 μg/L, respectively. In China, direct drinking water is used most frequently, so the concentrations of haloacetonitriles in direct drinking water were used to obtain data on the internal dose of haloacetonitriles. In addition, the simulation results for the PBPK model showed that the highest and lowest concentrations of DCAN occurred in the liver and venous blood, respectively. The peak concentrations of DBAN in each tissue were in the decreasing order liver > rapidly perfused tissue > kidney > slowly perfused tissues > fat > arterial blood (venous blood). In addition, the highest 95th percentile hazard quotients (HQ) value of haloacetonitriles via drinking water for humans was 8.89 × 10−3, much lower than 1. The 95th percentile hazard index (HI) was 0.046, which was also lower than 1, suggesting that there was no obvious non-carcinogenic risk.
Mostrar más [+] Menos [-]Enhanced bio-concentration of tris(1,3-dichloro-2-propyl) phosphate in the presence of nano-TiO2 can lead to adverse reproductive outcomes in zebrafish Texto completo
2018
Ren, Xin | Zhao, Xuesong | Duan, Xiaoyue | Fang, Ziwei
Interactions between organic toxicants and nano-particles in the aquatic environment may modify toxicant bioavailability and consequently the toxicant's fate and toxicity. To evaluate the potential impact of nano-titanium dioxide (TiO₂) on the bio-concentration and reproductive endocrine disruption of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) in fish, a comparative bioaccumulation study was conducted on zebrafish (Danio rerio, AB strain) treated with 0, 5.74, 23.6, or 90.7 μg L⁻¹ TDCIPP alone or co-exposed to TDCIPP and 0.09 mg L⁻¹ nano-TiO₂ for 21 days. Nano-TiO₂ can absorb TDCIPP and nano-TiO₂ is taken up into zebrafish. Chemical measurements showed that TDCIPP was bio-concentrated in zebrafish, and the highest level was detected in the liver, followed by the brain and gonads. Compared with TDCIPP treatment, increased tissue burdens of both TDCIPP were observed in the liver, brain, and gonads suggesting that nano-TiO₂ adsorbed TDCIPP and acted as a carrier facilitating the uptake and translocation of TDCIPP in tissues. Higher bio-concentration in the presence of nano-TiO₂ resulted in a significant decrease in the hepatic-somatic index, gonad-somatic index and brain-somatic index in F0 females but not F0 males. Moreover, a further gender-dependent reduction in testosterone (T), estradiol (E2), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), and induction of plasma vitellogenin (VTG) concentrations in adults were observed following co-exposure. Co-exposure also inhibited egg production and caused significant developmental toxicity in F1 larvae. The results obtained using this multi-marker approach suggested that nano-TiO₂ is a carrier of TDCIPP and accelerated its bio-concentration in adult zebrafish, resulting in adverse reproduction outcomes.
Mostrar más [+] Menos [-]Abiotic formation of organoiodine compounds by manganese dioxide induced iodination of dissolved organic matter Texto completo
2018
Hao, Zhineng | Wang, Juan | Yin, Yongguang | Cao, Dong | Liu, Jingfu
Iodination of dissolved organic matter (DOM) initiated by manganese oxide may represent an important source of organoiodine compounds (OICs) for iodide-containing waters. Here, Suwannee River natural organic matter was selected as model DOM, the OICs formation in simulated freshwater samples from iodinated DOM induced by manganese oxide (δ-MnO2) was investigated at different pHs and concentrations of iodide and δ-MnO2 by using negative ion electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR MS). While no OIC was observed in DOM control samples without δ-MnO2, hundreds of OICs were detected in the presence of δ-MnO2, suggesting the enhanced role of δ-MnO2 played in DOM iodination. The relative abundance was defined as the value of dividing the peak intensity of OICs by the highest m/z peak intensity constantly occurred in each mass spectrum, and selected as a parameter for partly reflecting the real level of OICs. The relative abundance of most OICs were around or greater than 1%, and several OICs with higher relative abundance were identified as diiodo-5-hydroxy-4-cyclopentene-1,3-dione, diiodomethane and diiodoacetic acid. The numbers of the formed OICs increased with the increase concentrations of iodide/δ-MnO2 and the decrease of pH, and nearly all OICs formed at lower levels of iodide/δ-MnO2 and/or higher pH were overlapped by that at higher levels of iodide/δ-MnO2 and/or lower pH, indicating the reliability of FT-ICR MS analysis techniques and data processing method. The OICs were formed mainly from the iodination of typical lignin-like and tannin-like compounds, as well as the precursor compounds with higher relative abundance through substitution reactions. Our findings demonstrate that the OICs formation by δ-MnO2-initiated DOM iodination should receive more attention and the concentration, exact structure and toxicity of the OICs need to be further investigated.
Mostrar más [+] Menos [-]Environmentally relevant microplastic exposure affects sediment-dwelling bivalves Texto completo
2018
Bour, Agathe | Haarr, Ane | Keiter, Steffen | Hylland, Ketil
Most microplastics are expected to sink and end up in marine sediments. However, very little is known concerning their potential impact on sediment-dwelling organisms. We studied the long-term impact of microplastic exposure on two sediment-dwelling bivalve species. Ennucula tenuis and Abra nitida were exposed to polyethylene microparticles at three concentrations (1; 10 and 25 mg/kg of sediment) for four weeks. Three size classes (4–6; 20–25 and 125–500 μm) were used to study the influence of size on microplastic ecotoxicity. Microplastic exposure did not affect survival, condition index or burrowing behaviour in either bivalve species. However, significant changes in energy reserves were observed. No changes were observed in protein, carbohydrate or lipid contents in E. tenuis, with the exception of a decrease in lipid content for one condition. However, total energy decreased in a dose-dependent manner for bivalves exposed to the largest particles. To the contrary, no significant changes in total energy were observed for A. nitida, although a significant decrease of protein content was observed for individuals exposed to the largest particles, at all concentrations. Concentration and particle size significantly influenced microplastic impacts on bivalves, the largest particles and higher concentrations leading to more severe effects. Several hypotheses are presented to explain the observed modulation of energy reserves, including the influence of microplastic size and concentration. Our results suggest that long-term exposure to microplastics at environmentally relevant concentrations can impact marine benthic biota.
Mostrar más [+] Menos [-]Presence of microplastics in benthic and epibenthic organisms: Influence of habitat, feeding mode and trophic level Texto completo
2018
Bour, Agathe | Avio, Carlo Giacomo | Gorbi, Stefania | Regoli, Francesco | Hylland, Ketil
The exponential production and use of plastics has generated increasing environmental release over the past decades, and microplastics (MPs) have been reported across all the oceans. Field studies have documented the occurrence of MPs in several species, but important knowledge gaps still remain. In the present study, we characterized the distribution of MPs in ten sediment-dwelling and epibenthic species representative of different habitat, feeding modes and trophic levels within the inner Oslofjord (Oslo, Norway), an area subjected to moderate anthropogenic pressures. Analysed species included fish, bivalves, echinoderms, crustaceans and polychaetes. MPs were present in all the species with a frequency up to 65% of positive individuals for some species. In most cases, 1 or 2 MPs were found per individual, but some organisms contained up to 7 particles. A total of 8 polymer typologies were identified, with PE and PP being the most common according to our extraction protocol. MP sizes ranged from 41 μm to lines as long as 9 mm. Our results indicate that occurrence of MPs in analysed biota is not influenced by organism habitat or trophic level, while characteristics and typology of polymers might be significantly affected by feeding mode of organisms.
Mostrar más [+] Menos [-]Novel in vitro method for measuring the mass fraction of bioaccessible atmospheric polycyclic aromatic hydrocarbons using simulated human lung fluids Texto completo
2018
Yu, Yingxin | Jiang, Zi'an | Zhao, Zhishen | Chong, Dan | Li, Guiying | Ma, Shengtao | Zhang, Yanan | An, Taicheng
The bioaccessibility of organic pollutants is a key factor in human health risk assessments. We developed a novel in vitro method for determining the mass fraction of bioaccessible atmospheric polycyclic aromatic hydrocarbons (PAHs) using an air-washing device containing simulated human lung fluid. The experimental parameters were optimized based on the deposition fractions (DFs) of PAHs in human lung fluids. The DFs were measured for PAHs based on the mass of compounds in the mainstream and exhaled cigarette smoke. The mass fractions of bioaccessible PAHs were measured by passing the mainstream cigarette smoke through the air-washing device, and they were calculated via a simple mass balance equation based on the PAHs in the fluid and mainstream cigarette smoke. The DFs of individual PAHs ranged from 20.5% to 78.1%, and the bioaccessible mass fractions varied between 45.5% and 99.8%. The octanol-water partition coefficients (KOW) significantly influenced both the DFs and bioaccessible mass fractions of PAHs, and the optimized in vitro method could be used to estimate the bioavailable atmospheric PAHs. This in vitro method can potentially be used to measure the mass fraction of bioaccessible atmospheric PAHs and to assess the health risk related to human exposure to airborne PAHs.
Mostrar más [+] Menos [-]Rhamnolipid influences biosorption and biodegradation of phenanthrene by phenanthrene-degrading strain Pseudomonas sp. Ph6 Texto completo
2018
Ma, Zhao | Liu, Juan | Dick, Richard P. | Li, Hui | Shen, Di | Gao, Yanzheng | Waigi, Michael Gatheru | Ling, Wanting
Given the sub-lethal risks of synthetic surfactants, rhamnolipid is a promising class of biosurfactants with the potential to promote the bioavailability of polycyclic aromatic hydrocarbons (PAHs), to provide a favorable substitute for synthetic surfactants. However, few previous studies have integrated the behavior and mechanism behind rhamnolipid-influenced PAH biosorption and biodegradation. This is, to our knowledge, the first report of a bacterial envelope regulated link between phenanthrene (PHE) biosorption and biodegradation by rhamnolipid-induced PHE-degrading strain Pseudomonas sp. Ph6. Rhamnolipid (0─400 mg L−1) can change the cell-surface zeta potential, cell surface hydrophobicity (CSH), cell ultra-microstructure and functional groups, and then alter PHE biosorption and biodegradation of Ph6. Greater amounts of PHE sorbed on cell envelopes results in more PHE diffusing into cytochylema, thus favoring PHE intracellular biodegradation of Ph6. Rhamnolipid (≤100 mg L−1) could change the microstructures and functional groups of cell envelopes of Ph6, enhance the cell-surface zeta potential and CSH, thus consequently favor PHE biosorption and biodegradation by strain Ph6. By contrast, rhamnolipid at higher concentrations (≥200 mg L−1) hindered PHE biosorption and biodegradation. Rhamnolipid, as a biosurfactant, can be successfully utilized as an additive to improve the microbial biodegradation of PAHs in the environments.
Mostrar más [+] Menos [-]Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size Texto completo
2018
Frère, Laura | Maignien, Lois | Chalopin, Morgane | Huvet, Arnaud | Rinnert, Emmanuel | Morrison, Hilary | Kerninon, Sandrine | Cassone, Anne-Laure | Lambert, Christophe | Reveillaud, Julie | Paul Pont, Ika
Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size Texto completo
2018
Frère, Laura | Maignien, Lois | Chalopin, Morgane | Huvet, Arnaud | Rinnert, Emmanuel | Morrison, Hilary | Kerninon, Sandrine | Cassone, Anne-Laure | Lambert, Christophe | Reveillaud, Julie | Paul Pont, Ika
Microplastics (<5 mm) exhibit intrinsic features such as density, hydrophobic surface, or high surface/volume ratio, that are known to promote microbial colonization and biofilm formation in marine ecosystems. Yet, a relatively low number of studies have investigated the nature of microplastic associated bacterial communities in coastal ecosystems and the potential factors influencing their composition and structure. Here, we characterized microplastics collected in the Bay of Brest by manual sorting followed by Raman spectroscopy and studied their associated bacterial assemblages using 16S amplicon high-throughput sequencing. Our methodology allowed discriminating polymer type (polyethylene, polypropylene and polystyrene) within small size ranges (0.3–1 vs. 1–2 vs. 2–5 mm) of microplastics collected. Data showed high species richness and diversity on microplastics compared to surrounding seawater samples encompassing both free living and particle attached bacteria. Even though a high proportion of operational taxonomic units (OTU; 94 ± 4%) was shared among all plastic polymers, polystyrene fragments exhibited distinct bacterial assemblages as compared to polyethylene and polypropylene samples. No effect of microplastic size was revealed regardless of polymer type, site and date of collection. The Vibrio genus was commonly detected in the microplastic fraction and specific PCR were performed to determine the presence of potentially pathogenic Vibrio strains (namely V. aestuarianus and the V. splendidus polyphyletic group). V. splendidus related species harboring putative oyster pathogens were detected on most microplastic pools (77%) emphasizing the need of further research to understand the role of microplastics on pathogen population transport and ultimate disease emergence.
Mostrar más [+] Menos [-]Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size Texto completo
2018
Frère, Laura | Maignien, Loïs | Chalopin, Morgane | Huvet, Arnaud | Rinnert, Emmanuel | Morrison, Hilary | Kerninon, Sandrine | Cassone, Anne-Laure | Lambert, Christophe | Reveillaud, Julie | Paul-Pont, Ika | Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Microbiologie des Environnements Extrêmophiles (LM2E) ; Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS) | Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Marine Biological Laboratory (MBL) ; University of Chicago | LABOCEA Laboratoire [Plouzané, France] | Animal, Santé, Territoires, Risques et Ecosystèmes (UMR ASTRE) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA) | ANR-15-CE34-0006,Nanoplastics,Microplastiques, nanoplastiques dans l'environnement marin: caractérisation, impacts et évaluation des risques sanitaires.(2015)
International audience | Microplastics (<5 mm) exhibit intrinsic features such as density, hydrophobic surface, or high surface/volume ratio, that are known to promote microbial colonization and biofilm formation in marine ecosystems. Yet, a relatively low number of studies have investigated the nature of microplastic associated bacterial communities in coastal ecosystems and the potential factors influencing their composition and structure. Here, we characterized microplastics collected in the Bay of Brest by manual sorting followed by Raman spectroscopy and studied their associated bacterial assemblages using 16S amplicon high-throughput sequencing. Our methodology allowed discriminating polymer type (polyethylene, polypropylene and polystyrene) within small size ranges (0.3-1 vs. 1-2 vs. 2-5 mm) of microplastics collected. Data showed high species richness and diversity on microplastics compared to surrounding seawater samples encompassing both free living and particle attached bacteria. Even though a high proportion of operational taxonomic units (OTU; 94 ± 4%) was shared among all plastic polymers, polystyrene fragments exhibited distinct bacterial assemblages as compared to polyethylene and polypropylene samples. No effect of microplastic size was revealed regardless of polymer type, site and date of collection. The Vibrio genus was commonly detected in the microplastic fraction and specific PCR were performed to determine the presence of potentially pathogenic Vibrio strains (namely V. aestuarianus and the V. splendidus polyphyletic group). V. splendidus related species harboring
Mostrar más [+] Menos [-]Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size Texto completo
2018
Frere, Laura | Maignien, Lois | Chalopin, Morgane | Huvet, Arnaud | Rinnert, Emmanuel | Morrison, Hilary | Kerninon, Sandrine | Cassone, Anne-laure | Lambert, Christophe | Reveillaud, Julie | Paul-pont, Ika
Microplastics (<5 mm) exhibit intrinsic features such as density, hydrophobic surface, or high surface/volume ratio, that are known to promote microbial colonization and biofilm formation in marine ecosystems. Yet, a relatively low number of studies have investigated the nature of microplastic associated bacterial communities in coastal ecosystems and the potential factors influencing their composition and structure. Here, we characterized microplastics collected in the Bay of Brest by manual sorting followed by Raman spectroscopy and studied their associated bacterial assemblages using 16S amplicon high-throughput sequencing. Our methodology allowed discriminating polymer type (polyethylene, polypropylene and polystyrene) within small size ranges (0.3–1 vs. 1–2 vs. 2–5 mm) of microplastics collected. Data showed high species richness and diversity on microplastics compared to surrounding seawater samples encompassing both free living and particle attached bacteria. Even though a high proportion of operational taxonomic units (OTU; 94 ± 4%) was shared among all plastic polymers, polystyrene fragments exhibited distinct bacterial assemblages as compared to polyethylene and polypropylene samples. No effect of microplastic size was revealed regardless of polymer type, site and date of collection. The Vibrio genus was commonly detected in the microplastic fraction and specific PCR were performed to determine the presence of potentially pathogenic Vibrio strains (namely V. aestuarianus and the V. splendidus polyphyletic group). V. splendidus related species harboring putative oyster pathogens were detected on most microplastic pools (77%) emphasizing the need of further research to understand the role of microplastics on pathogen population transport and ultimate disease emergence.
Mostrar más [+] Menos [-]