Refinar búsqueda
Resultados 701-710 de 4,935
Marine vs freshwater microalgae exopolymers as biosolutions to microplastics pollution Texto completo
2019
Cunha, César | Faria, Marisa | Nogueira, Natacha | Ferreira, Artur | Cordeiro, Nereida
Microalgae can excrete exopolymer substances (EPS) with a potential to form hetero-aggregates with microplastic particles. In this work, two freshwater (Microcystis panniformis and Scenedesmus sp.) and two marine (Tetraselmis sp. and Gloeocapsa sp.) EPS producing microalgae were exposed to different microplastics. In this study, the influence of the microplastic particles type, size and density in the production of EPS and hetero-aggregates potential was studied. Most microalgae contaminated with microplastics displayed a cell abundance decrease (of up to 42%) in the cultures. The results showed that the formed aggregates were composed of microalgae and EPS (homo-aggregates) or a combination of microalgae, EPS and microplastics (hetero-aggregates). The hetero-aggregation was dependent on the size and yield production of EPS, which was species specific. Microcystis panniformis and Scenedesmus sp. exhibited small EPS, with a higher propension to disaggregate, and consequently lower capabilities to aggregate microplastics. Tetraselmis sp. displayed a higher ability to aggregate both low and high-density microplastics, being partially limited by the size of the microplastics. Gloeocapsa sp. had an outstanding EPS production and presented excellent microplastic aggregation capabilities (adhered onto the surface and also incorporated into the EPS). The results highlight the potential of microalgae to produce EPS and flocculate microplastics, contributing to their vertical transport and consequent deposition. Thus, this work shows the potential of microalgae as biocompatible solutions to water microplastics treatment.
Mostrar más [+] Menos [-]Toxicogenomic responses of Caenorhabditis elegans to pristine and transformed zinc oxide nanoparticles Texto completo
2019
Starnes, Daniel | Unrine, Jason | Chen, Chun | Lichtenberg, Stuart | Starnes, Catherine | Svendsen, Claus | Kille, Peter | Morgan, John | Baddar, Zeinah Elhaj | Spear, Amanda | Bertsch, Paul | Chen, Kuey Chu | Tsyusko, Olga
Manufactured nanoparticles (MNPs) undergo transformation immediately after they enter wastewater treatment streams and during their partitioning to sewage sludge, which is applied to agricultural soils in form of biosolids. We examined toxicogenomic responses of the model nematode Caenorhabditis elegans to pristine and transformed ZnO-MNPs (phosphatized pZnO- and sulfidized sZnO-MNPs). To account for the toxicity due to dissolved Zn, a ZnSO₄ treatment was included. Transformation of ZnO-MNPs reduced their toxicity by nearly ten-fold, while there was almost no difference in the toxicity of pristine ZnO-MNPs and ZnSO₄. This combined with the fact that far more dissolved Zn was released from ZnO- compared to pZnO- or sZnO-MNPs, suggests that dissolution of pristine ZnO-MNPs is one of the main drivers of their toxicity. Transcriptomic responses at the EC₃₀ for reproduction resulted in a total of 1161 differentially expressed genes. Fifty percent of the genes differentially expressed in the ZnSO₄ treatment, including the three metal responsive genes (mtl-1, mtl-2 and numr-1), were shared among all treatments, suggesting that responses to all forms of Zn could be partially attributed to dissolved Zn. However, the toxicity and transcriptomic responses in all MNP treatments cannot be fully explained by dissolved Zn. Two of the biological pathways identified, one essential for protein biosynthesis (Aminoacyl-tRNA biosynthesis) and another associated with detoxification (ABC transporters), were shared among pristine and one or both transformed ZnO-MNPs, but not ZnSO₄. When comparing pristine and transformed ZnO-MNPs, 66% and 40% of genes were shared between ZnO-MNPs and sZnO-MNPs or pZnO-MNPs, respectively. This suggests greater similarity in transcriptomic responses between ZnO-MNPs and sZnO-MNPs, while toxicity mechanisms are more distinct for pZnO-MNPs, where 13 unique biological pathways were identified. Based on these pathways, the toxicity of pZnO-MNPs is likely to be associated with their adverse effect on digestion and metabolism.
Mostrar más [+] Menos [-]Occurrence, spatial-temporal distribution and ecological risks of pharmaceuticals and personal care products response to water diversion across the rivers in Nanjing, China Texto completo
2019
Yang, Haohan | Lü, Guanghua | Yan, Zhenhua | Liu, Jianchao | Dong, Huike | Jiang, Runren | Zhou, Ranran | Zhang, Peng | Sun, Yu | Nkoom, Matthew
Water diversion projects have been continuously used to alleviate water quality issues that arise during urbanization. However, studies about whether it has possible effects on the status of pharmaceutical and personal care products (PPCPs) are limited. In this study, the occurrence trends and spatial-temporal distribution characteristics of 50 PPCPs were investigated in surface water, suspended particulate matter (SPM) and sediments in Nanjing urban rivers under the background of the water diversion project from the Yangtze River to the Qinhuai River. In the four field campaigns that were embarked on April to July 2018, a total of 40, 38 and 24 PPCPs were detected in surface water, SPM and sediments, respectively, with overall concentrations of 138–1990 ng/L, 3214–33701 ng/g and 12.1–109 ng/g dry weight (dw) among nine sampling sites. The excessive concentration of caffeine (20.6–905 ng/L) may be evidence of the direct discharge of untreated sewage and an obvious indicator of the overall concentrations of PPCPs. The PPCPs contamination levels in surface water were increased along with the direction of the water diversion in urban runoff, and decreased by 8–31% due to the increase in volume attributable to the water diversion. The distribution coefficients (Kd) of pollutants in the SPM-water phases (3.0–5.6 L/kg) were two orders of magnitude higher than those in the sediment-water phases (0.3–3.3 L/kg). And the positive correlations between their log Kow and SPM-water log Kd values indicated SPM was the important carrier determining the fate of organic UV filters. Furthermore, the results of ecological risk assessment demonstrated that although the increase in the volume of water caused by the water diversion reduced the overall ecological risks of PPCPs in urban rivers, the current contamination level still represents high risks to algae and fish.
Mostrar más [+] Menos [-]Exposure of low-dose fipronil enantioselectively induced anxiety-like behavior associated with DNA methylation changes in embryonic and larval zebrafish Texto completo
2019
Qian, Yi | Ji, Chenyang | Yue, Siqing | Zhao, Meirong
Fipronil, a broad-spectrum chiral insecticide, has been documented to induce significant neurotoxicity to nontarget aquatic species; however, whether its neurotoxicity behaves enantioselectively and what molecular mechanisms correspond to the neurotoxicity remain unanswered. To date, few investigations have focused on the genomic mechanisms responsible for the enantioselective toxicity of chiral pesticides. The epigenetic modifications, especially DNA methylation, caused by the pesticides are also blind spot of the research works. Video tracking showed that R-fipronil exhibited more intense neurotoxicity, as well as the induction of more severe anxiety-like behavior, such as boosted swimming speed and dysregulated photoperiodic locomotion, to embryonic and larval zebrafish compared with S-fipronil. The MeDIP-Seq analysis, combined with Gene Ontology and KEGG, revealed that R-fipronil disrupted five signaling pathways (MAPK, Calcium signaling, Neuroactive ligand-receptor interaction, Purine metabolism, and Endocytosis) to a greater extent than S-fipronil through the hypermethylation of several important neuro-related genes, whereas no significant alterations of global DNA methylation were observed on the two enantiomers. To summarize, our data indicated that the fipronil-conducted enantioselective neurotoxicity likely applied its enantioselectivity by the dysregulation of DNA methylation. Our study also provided novel epigenetic insights into the study of enantioselective biological effects and the relevant underlying mechanisms of chiral insecticide.
Mostrar más [+] Menos [-]The utility of vitellogenin as a biomarker of estrogenic endocrine disrupting chemicals in molluscs Texto completo
2019
Trần, Thị Kim Anh | Yu, Richard Man Kit | Islam, Rafiquel | Nguyen, Thi Hong Tham | Bui, Thi Lien Ha | Kong, Richard Yuen Chong | O'Connor, Wayne A. | Leusch, Frederic D.L. | Andrew-Priestley, Megan | MacFarlane, Geoff R.
Estrogenic endocrine disrupting chemicals (EDCs) are natural hormones, synthetic compounds or industrial chemicals that mimic estrogens due to their structural similarity with estrogen's functional moieties. They typically enter aquatic environments through wastewater treatment plant effluents or runoff from intensive livestock operations. Globally, most natural and synthetic estrogens in receiving aquatic environments are in the low ng/L range, while industrial chemicals (such as bisphenol A, nonylphenol and octylphenol) are present in the μg to low mg/L range. These environmental concentrations often exceed laboratory-based predicted no effect concentrations (PNECs) and have been evidenced to cause negative reproductive impacts on resident aquatic biota. In vertebrates, such as fish, a well-established indicator of estrogen-mediated endocrine disruption is overexpression of the egg yolk protein precursor vitellogenin (Vtg) in males. Although the vertebrate Vtg has high sensitivity and specificity to estrogens, and the molecular basis of its estrogen inducibility has been well studied, there is growing ethical concern over the use of vertebrate animals for contaminant monitoring. The potential utility of the invertebrate Vtg as a biomonitor for environmental estrogens has therefore gained increasing attention. Here we review evidence providing support that the molluscan Vtg holds promise as an invertebrate biomarker for exposure to estrogens. Unlike vertebrates, estrogen signalling in invertebrates remains largely unclarified and the classical genomic pathway only partially explains estrogen-mediated activation of Vtg. In light of this, in the latter part of this review, we summarise recent progress towards understanding the molecular mechanisms underlying the activation of the molluscan Vtg gene by estrogens and present a hypothetical model of the interplay between genomic and non-genomic pathways in the transcriptional regulation of the gene.
Mostrar más [+] Menos [-]Sustainable remediation through the risk management perspective and stakeholder involvement: A systematic and bibliometric view of the literature Texto completo
2019
Braun, Adeli Beatriz | Trentin, Adan William da Silva | Visentin, Caroline | Thomé, Antônio
Sustainable remediation is a new way of thinking and acting in the management of contaminated sites. This research aims to identify and structure the state-of-the-art of sustainable remediation from the risk management and stakeholder involvement perspective. A systematic and bibliometric study of scientific production was performed on scientific papers indexed in the Scopus and Web of Science databases with the objectives: 1) to select a bibliographic portfolio that is aligned with the perception of the researchers in regard to theme, 2) to perform a bibliometric analysis of the selected bibliographic portfolio, and 3) to conduct a thematic synthesis and identify the integration of sustainable remediation from the risk management and stakeholder involvement perspective. The results indicated that although sustainable remediation is a recent theme it presents a promising field for development worldwide, verified by the growing number of publications in recent years. A change is observed in the way risk management is considered with the rise of sustainable remediation, demonstrated by different approaches in publications. Likewise, the involvement of stakeholders is widely discussed, and the importance of their participation in decision-making processes in the field of sustainable remediation is identified. This research brings several and new contributions as it provides with a detailed overview and guidance about the main characteristics and peculiarities as well as what already exists, the form to approach, the advances and what still needs to be improved so that the perception of stakeholders and risk management are better understood within the context of sustainable remediation.
Mostrar más [+] Menos [-]Inflammatory and oxidative injury is induced in cardiac and pulmonary tissue following fipronil exposure in Japanese quail: mRNA expression of the genes encoding interleukin 6, nuclear factor kappa B, and tumor necrosis factor-alpha Texto completo
2019
Khalil, Samah R. | Mohammed, Wafaa A. | Zaglool, Asmaa W. | Elhady, Walaa M. | Farag, Mayada R. | El sayed, Shafika A.M.
The phenylpyrazole insecticide, fipronil, isused for the eradication of insects in agriculture, which also exposes various non-target groups such as birds and animals. Our aim was to assess the cardiac and pulmonary consequences of sub-acute administration of fipronil (¹∕₅ LD₅₀; 2.26 mg/kg) in the Japanese quail for fifteen days and to determine the tissue recovery over a period of 60 days. Fipronil exposure led to a significant decrease in the body weight of the treated birds. Its exposure also induced cardiac and pulmonary damage of varying degrees. Fipronil increased the lipid peroxide (LPO) and nitric oxide (NO) contents as well as indices of tissue injury in the serum of exposed birds. Furthermore, it decreased the antioxidant indices in both the organs. Most of these changes gradually reversed and the histological changes, particularly of the heart, reversed completely by day-60 of recovery. Furthermore, alterations in the mRNA gene expressions of Nuclear factor kappa B (NF-κB), Interleukin 6 (IL-6), and Tumor necrosis factor-alpha (TNF-α) were monitored by quantitative polymerase chain reaction (RT-PCR). In both the tissues, a significant up-regulation of the transcripts was recorded after fipronil administration, which was reversed during the recovery period in the heart tissue except for TNF-α, while the transcripts in the lung tissue declined non-significantly. This study showed that the exposure of Japanese quail to fipronil has a profound negative impact on heart and lung including oxidative injury and tissue inflammation. Fipronil can induce the activity of NF-κB inflammatory -signaling pathway that play a role in the associated tissue inflammation. Although most of the cardiac changes could be reversed after a recovery period of sixty days, the pulmonary changes did not reverse much.
Mostrar más [+] Menos [-]Impact of field biomass burning on local pollution and long-range transport of PM2.5 in Northeast Asia Texto completo
2019
Uranishi, Katsushige | Ikemori, Fumikazu | Shimadera, Hikari | Kondo, Akira | Sugata, Seiji
Biomass burning (BB), such as, crop field burning during the post-harvest season, emits large amounts of air pollutants (e.g., PM₂.₅) that severely impact human health. However, it is challenging to evaluate the impact of BB on PM₂.₅ due to uncertainties in the size and location of sources as well as their temporal and spatial variability. This study focused on the impacts of BB on local pollution as well as the long-range transport of PM₂.₅ in Northeast Asia resulting from a huge field BB event in Northeast China during the autumn of 2014. Air quality simulations using the Community Multiscale Air Quality (CMAQ) model were conducted in the year 2014 over the horizontal domains covering Northeast Asia, including the Japanese mainland. In the baseline simulation (Base), field BB emissions were derived from Fire INventory from NCAR (FINN) v1.5 for the year 2014. The model reasonably captured the daily mean PM₂.₅ mass concentrations, however, it underestimated concentrations in autumn around Northeast China where irregular field BB following the harvest occurred frequently. To address the underestimation of emissions from BB sources in China, another simulation with boosted BB sources from cropland area (FINN20_crop) was conducted in addition to the Base simulation. The model performance of FINN20_crop was significantly improved and showed smaller biases and higher indices of agreement between simulated and observed values in comparison to those of Base. To evaluate long-range transport of PM₂.₅ from BB sources in China towards Japan, CMAQ with brute-force method (CMAQ/BFM)-estimated BB contributions for Base and FINN20_crop cases were compared with Positive Matrix Factorization (PMF)-estimated BB contributions at Noto Peninsula in Japan. The CMAQ/BFM-estimated contributions from FINN20_crop were in greater agreement with the PMF-estimated contributions. The comparison of BB contributions estimated by the two contrasting models also indicated large underestimations in the current BB emission estimates.
Mostrar más [+] Menos [-]Silver stress differentially affects growth of phototrophic and heterotrophic chrysomonad flagellate populations Texto completo
2019
Böck, Christina | Zimmermann, Sonja | Beisser, Daniela | Dinglinger, Sarah-Maria | Engelskirchen, Simone | Giesemann, Philipp | Klink, Saskia | Olefeld, Jana Laura | Rahmann, Sven | Vos, Matthijs | Boenigk, Jens | Sures, Bernd
Silver ions are among the predominant anthropogenic introduced pollutants in aquatic systems. As silver has effects on species at all trophic levels the community composition in aquatic habitats can be changed as a result of silver stress. The response of planktonic protists to environmental stressors is particularly important as they act both as producers and consumers in complex planktonic communities. Chrysomonad flagellates are of major interest, since this group includes heterotrophic, mixotrophic and phototrophic taxa, and therefore allows analysis of silver stress in organisms with contrasting nutritional strategies independent of a potential taxonomic bias. In a series of lab experiments, we compared the response of different trophic chrysophyte strains to low (5 μg L⁻¹), medium (10 μg L⁻¹) and high (20 μg L⁻¹) nominal Ag concentrations in combination with changes in temperature and light intensity (phototrophs), temperature and food concentration (heterotrophs), or a combination of the above settings (mixotrophs). All tested strains were negatively affected by silver in their growth rates. The phototrophic strains reacted strongly to silver stress, whereas light intensity and temperature had only minor effects on growth rates. For heterotrophic strains, high food concentration toned down the effect of silver, whereas temperatures outside the growth optimum had a combined stress effect. The mixotrophic strains reacted differently depending on whether their nutritional mode was dominated by heterotrophy or by phototrophy. The precise response pattern across all variables was uniquely different for every single species we tested. The present work contributes to a deeper understanding of the effects of environmental stressors on complex planktonic communities. It indicates that silver will negatively impact planktonic communities and may create shifts in their composition and functioning.
Mostrar más [+] Menos [-]Species and release characteristics of VOCs in furniture coating process Texto completo
2019
Qi, Yiqing | Shen, Liming | Zhang, Jilei | Yao, Jia | Lu, Rong | Miyakoshi, Tetsuo
Volatile organic compounds (VOCs) are an important factor affecting ambient air quality, and furniture production is one of the important sources of VOC pollution. High VOC concentrations have adverse effects on the environment and worker welfare in furniture factories. In order to control VOC emissions in a furniture workshop, the VOC species and concentration distributions were examined. Qualitative analysis of VOC species was carried out by headspace gas chromatography/mass spectrometry. The results showed that VOCs from a furniture workshop were mainly 12 substances including acetate, toluene, and xylene compounds. The heights and representative positions of VOCs released during the coating process were determined, and the results showed that VOC concentrations depended on environmental and height factors. The concentration of VOCs decreased with increasing altitude and reached a maximum concentration at 0.4 m above the ground. Because the concentration of VOCs varied with temperature, humidity, air pressure, and amount of spray paint, this paper established functional relationships between VOC concentrations and temperature, humidity, air pressure, and amount of spray paint. These results provide a theoretical basis for furniture workshops to automatically monitor and control VOCs.VOCs from the furniture workshop were mainly composed of 10 substances including acetate, toluene, and xylene compounds.
Mostrar más [+] Menos [-]