Refinar búsqueda
Resultados 801-810 de 6,558
COVID-19 prevalence and fatality rates in association with air pollution emission concentrations and emission sources Texto completo
2020
Hendryx, Michael | Luo, Juhua
The novel coronavirus disease (COVID-19) is primarily respiratory in nature, and as such, there is interest in examining whether air pollution might contribute to disease susceptibility or outcome. We merged data on COVID-19 cumulative prevalence and fatality rates as of May 31, 2020 with 2014–2019 pollution data from the US Environmental Protection Agency Environmental Justice Screen (EJSCREEN), with control for state testing rates, population density, and population covariate data from the County Health Rankings. Pollution data included three types of air emission concentrations (particulate matter<2.5 μm (PM2.5), ozone and diesel particulate matter (DPM)), and four pollution source variables (proximity to traffic, National Priority List sites, Risk Management Plan (RMP) sites, and hazardous waste treatment, storage and disposal facilities (TSDFs)). Results of mixed model linear multiple regression analyses indicated that, controlling for covariates, COVID-19 prevalence and fatality rates were significantly associated with greater DPM. Proximity to TSDFs was associated to greater fatality rates, and proximity to RMPs was associated with greater prevalence rates. Results are consistent with previous research indicating that air pollution increases susceptibility to respiratory viral pathogens. Results should be interpreted cautiously given the ecological design, the time lag between exposure and outcome, and the uncertainties in measuring COVID-19 prevalence. Areas with worse prior air quality, especially higher concentrations of diesel exhaust, may be at greater COVID-19 risk, although further studies are needed to confirm these relationships.
Mostrar más [+] Menos [-]Effect of applying calcium peroxide on the accumulation of arsenic in rice plants grown in arsenic-elevated paddy soils Texto completo
2020
Syu, Chien-Hui | Yu, Chih-Han | Lee, Dar-Yuan
Water management such as drainage for creating aerobic conditions is considered to be an adequate method for reducing the accumulation of arsenic (As) in rice grains; however, it is difficult to conduct drainage operations in some areas that experience a lengthy rainy season as well as in soils with poor drainage. In this regard, application of oxygen-releasing compounds (ORCs) may be an alternative method for maintaining aerobic conditions even under flooding in paddy soils. Therefore, a pot experiment was conducted to investigate the effects of application of an ORC, calcium peroxide (CaO₂), on the growth and accumulation of As in rice plants grown in As-contaminated paddy soils. The rice plants were grown in two soils with different characteristics and As levels, and all of the tested soils were treated with 0, 5, 10, and 20 g CaO₂ kg⁻¹. Results revealed that the concentration of As and the distribution of arsenite in the pore water of all tested soils was reduced by CaO₂ application. In addition, the grain yields increased and the concentration of inorganic As in brown rice decreased by 25–45% upon CaO₂ treatment of low-As-level soils (<16 mg kg⁻¹). However, the effect of CaO₂ application on the accumulation of inorganic As in brown rice in As-enriched soils (>78 mg kg⁻¹) could not found in this study, due to the rice plant suffered from serious As phytotoxicity. It suggests that CaO₂ amendment may be suitable for reducing the As concentration of rice grains grown in low-As-level paddy soils, but for As-enriched soils, the proposed CaO₂ application method is not feasible.
Mostrar más [+] Menos [-]Impact of harbour activities on local air quality: A review Texto completo
2020
Sorte, Sandra | Rodrigues, Vera | Borrego, C. | Monteiro, Alexandra
Several harbour activities cause negative environmental impacts in the harbours’ surrounding areas, namely the degradation of air quality. This paper intends to comprehensively review the status of the air quality measured in harbour areas. The published studies show a limited number of available air quality monitoring data in harbours areas, mostly located in Europe (71%). Measured concentrations of the main air pollutants were compiled and intercompared, for different countries worldwide allowing a large spatial representativeness. The higher NO₂ and PM₁₀ concentrations were found in Europe - ranging between 12 and 107 μg/m³ and 2–50 μg/m³, respectively, while the higher concentrations of PM₂.₅ were found in Asia (25–70 μg/m³). In addition, the lower levels of SO₂ monitored in recent years suggest that current mitigation strategies adopted across Europe were very efficient in promoting the reduction of SO₂ concentrations.Part of the reviewed studies also estimated the contributions from ship emissions to PM concentration through the application of source apportionment methods, with an average of 5–15%. In some specific harbour areas in Asia, ships can contribute up to 7–26% to the local fine particulate matter concentrations. This review confirms that emissions from the maritime transport sector should be considered as a significant source of particulate matter in harbour areas, since this pollutant concentrations are frequently exceeding the established standard legal limit values. Therefore, the results from this review boost the implementation of mitigation measures, aiming to reduce, in particular, particulate matter emissions.
Mostrar más [+] Menos [-]Ambient fine particulate matter disrupts hepatic circadian oscillation and lipid metabolism in a mouse model Texto completo
2020
Li, Ran | Wang, Yixuan | Chen, Rucheng | Gu, Weijia | Zhang, Lu | Gu, Jinge | Wang, Ziyao | Liu, Ying | Sun, Qinghua | Zhang, Kezhong | Liu, Cuiqing
Emerging evidence has shown that exposure to ambient fine particulate matter (PM₂.₅) is associated with hepatic lipid accumulation. However, the underlying mechanism is not fully characterized yet. Autonomous circadian clock in the liver plays a fundamental role in maintaining lipid metabolism homeostasis. In this study, we evaluated the effects of ambient PM₂.₅ exposure on the expression of hepatic circadian clock genes and expression rhythm of genes associated with lipid metabolism in mice liver. Male C57BL/6 mice were randomly assigned to ambient PM₂.₅ or filtered air for 10 weeks via a whole body exposure system. We found that the liver mass was reduced significantly at zeitgeber time (ZT) 8 in mice exposed to PM₂.₅ but not levels or circadian rhythm of hepatic triglycerides or free fatty acid (FFA). In addition, exposure to PM₂.₅ led to enhanced expression of bmal1 at ZT0/24, cry1 at ZT16 and rev-erbα at ZT4 and ZT8. Furthermore, the expression of pparα was enhanced in mice liver at ZT4 and ZT8 after PM₂.₅ exposure, with upregulation of pparα-mediated genes responsible for fatty acid transport and oxidation. Finally, the expression of rate-limiting enzymes for lipid synthesis was all significantly increased in the liver of PM₂.₅ exposed mice at ZT12. Therefore, the present study provides new perspectives for revealing the etiology of hepatic lipid metabolism abnormality from PM₂.₅-induced circadian rhythm disorder.
Mostrar más [+] Menos [-]Cryptosporidium and Giardia in surface water and drinking water: Animal sources and towards the use of a machine-learning approach as a tool for predicting contamination Texto completo
2020
Ligda, Panagiota | Claerebout, Edwin | Kostopoulou, Despoina | Zdragas, Antonios | Casaert, Stijn | Robertson, Lucy J. | Sotiraki, Smaragda
Cryptosporidium and Giardia are important parasites due to their zoonotic potential and impact on human health, often causing waterborne outbreaks of disease. Detection of (oo)cysts in water matrices is challenging and few countries have legislated water monitoring for their presence. The aim of this study was to investigate the presence and origin of these parasites in different water sources in Northern Greece and identify interactions between biotic/abiotic factors in order to develop risk-assessment models. During a 2-year period, using a longitudinal, repeated sampling approach, 12 locations in 4 rivers, irrigation canals, and a water production company, were monitored for Cryptosporidium and Giardia, using standard methods. Furthermore, 254 faecal samples from animals were collected from 15 cattle and 12 sheep farms located near the water sampling points and screened for both parasites, in order to estimate their potential contribution to water contamination. River water samples were frequently contaminated with Cryptosporidium (47.1%) and Giardia (66.2%), with higher contamination rates during winter and spring. During a 5-month period, (oo)cysts were detected in drinking-water (<1/litre). Animals on all farms were infected by both parasites, with 16.7% of calves and 17.2% of lambs excreting Cryptosporidium oocysts and 41.3% of calves and 43.1% of lambs excreting Giardia cysts. The most prevalent species identified in both water and animal samples were C. parvum and G. duodenalis assemblage AII. The presence of G. duodenalis assemblage AII in drinking water and C. parvum IIaA15G2R1 in surface water highlights the potential risk of waterborne infection. No correlation was found between (oo)cyst counts and faecal-indicator bacteria. Machine-learning models that can predict contamination intensity with Cryptosporidium (75% accuracy) and Giardia (69% accuracy), combining biological, physicochemical and meteorological factors, were developed. Although these prediction accuracies may be insufficient for public health purposes, they could be useful for augmenting and informing risk-based sampling plans.
Mostrar más [+] Menos [-]Pollution characteristics and toxicity of potentially toxic elements in road dust of a tourist city, Guilin, China: Ecological and health risk assessment☆ Texto completo
2020
Shahab, Asfandyar | Zhang, Hui | Ullah, Habib | Rashid, Audil | Rād, Saʻīd | Li, Jieyue | Xiao, He
Road dust samples from industrial, urban, and tourist areas of the international tourist city of Guilin, China, were collected to study the concentration, spatial distribution, pollution level, and health risk of potentially toxic elements (PTEs) using an array-based risk assessment model from the United States Environmental Protection Agency. The geoaccumulation index (Igₑₒ), ecological risk index, and spatial interpolation were used to investigate the road dust pollution level. The results indicated that apart from Ni and Al, the concentration of all the heavy metals (Pb, Zn, Ni, Cu, Cr, Cd, Fe, Mn, and As) were markedly higher than the corresponding background values in the three functional areas. Based on the Igₑₒ, the study area had an uncontaminated to moderate pollution level, and the industrial area was slightly more polluted and posed a greater ecological risk than the urban and tourist areas. Comparatively, Pb, Zn, and Cu exhibited higher pollution levels in the three functional sites. Hotspots of PTEs were more concentrated in urban and industrial areas than in tourist areas. Furthermore, the health risk model revealed significant non-carcinogenic risks to children from As in urban, industrial, and tourist areas as the hazard quotients (1.64, 2.04, and 1.42, respectively) exceeded the threshold standard of 1.00. The carcinogenic risk via ingestion (RIᵢₙg) illustrated significant risks to children from Cr, As, and Ni because the RIᵢₙg values were considerably higher than the threshold standard (1.00E-6 to 1.00E-4) in the three functional areas. However, no cancer risk was observed from the dermal and inhalation pathways.
Mostrar más [+] Menos [-]iTRAQ-based proteomic analysis on the mitochondrial responses in gill tissues of juvenile olive flounder Paralichthys olivaceus exposed to cadmium Texto completo
2020
Lu, Zhen | Wang, Shuang | Ji, Chenglong | Li, Fei | Cong, Ming | Shan, Xiujuan | Wu, Huifeng
Cadmium (Cd) is an important heavy metal pollutant in the Bohai Sea. Mitochondria are recognized as the key target for Cd toxicity. However, mitochondrial responses to Cd have not been fully investigated in marine fishes. In this study, the mitochondrial responses were characterized in gills of juvenile flounder Paralichthys olivaceus treated with two environmentally relevant concentrations (5 and 50 μg/L) of Cd for 14 days by determination of mitochondrial membrane potential (MMP), observation of mitochondrial morphology and quantitative proteomic analysis. Both Cd treatments significantly decreased MMPs of mitochondria from flounder gills. Mitochondrial morphologies were altered in Cd-treated flounder samples, indicated by more and smaller mitochondria. iTRAQ-based proteomic analysis indicated that a total of 128 proteins were differentially expressed in both Cd treatments. These proteins were basically involved in various biological processes in gill mitochondria, including mitochondrial morphology and import, tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), primary bile acid biosynthesis, stress resistance and apoptosis. These results indicated that dynamic regulations of energy homeostasis, cholesterol metabolism, stress resistance, apoptosis, and mitochondrial morphology in gill mitochondria might play significant roles in response to Cd toxicity. Overall, this study provided a global view on mitochondrial toxicity of Cd in flounder gills using iTRAQ-based proteomics.
Mostrar más [+] Menos [-]Coastal zone use influences the spatial distribution of microplastics in Hangzhou Bay, China Texto completo
2020
Wang, Ting | Hu, Menghong | Song, Lili | Yu, Jun | Liu, Ruijuan | Wang, Shixiu | Wang, Zhifu | Sokolova, Inna M. | Huang, Wei | Wang, Youji
Microplastic pollution in estuarine and coastal environments has recently been characterised in several countries but few researchers have addressed the influence of different forms of coastal zone use on the distribution of microplastic. Here, microplastic particles were sampled in Hangzhou Bay, which is heavily influenced by a range of human activities, and their abundance, size, and polymer type characterised. The abundance of microplastics was 0.14 ± 0.12 items/m³ in water, 84.3 ± 56.6 items/kg dry weight of sediment, and between 0.25 ± 0.14 and 1.4 ± 0.37 items/individual in biota. These results show that Hangzhou Bay has a low level of microplastic contamination compared to other coastal systems in China, although abundance was spatially variable within the bay; relatively higher microplastic abundances were found in the southern area of the bay, which has adjacent industrial and urban land-use zones, while lower abundances were observed in the central and northern bay areas where mariculture, fisheries, and mineral and energy industries are most common. The relatively low microplastic abundance observed in the biota samples is consistent with the generally low values for the seawater and sediment samples. Pellets were the most common of four particle-shape classes (fibres, fragments, films, and pellets) in surface seawater, while fibres were most abundant in sediment and biota. Smaller-sized microplastics (<1.0 mm) were dominant in all samples. Microplastics in the surface seawater were dominated by low-density polypropylene and polyethylene particles, while rayon was dominant in the sediment and biota samples. Our results demonstrate that regional variability in anthropogenic activity and land-use are important controls on the spatial pattern of microplastic pollution in Hangzhou Bay.
Mostrar más [+] Menos [-]Environmental six-ring polycyclic aromatic hydrocarbons are potent inducers of the AhR-dependent signaling in human cells Texto completo
2020
Vondráček, Jan | Pěnčíková, Kateřina | Ciganek, Miroslav | Pivnička, Jakub | Karasová, Martina | Hýžďalová, Martina | Strapáčová, Simona | Pálková, Lenka | Neča, Jiří | Matthews, Jason | Lom, Michal Vojtíšek | Topinka, Jan | Milcová, Alena | Machala, Miroslav
The toxicities of many environmental polycyclic aromatic hydrocarbons (PAHs), in particular those of high-molecular-weight PAHs (with MW higher than 300), remain poorly characterized. The objective of this study was to evaluate the ability of selected environmentally relevant PAHs with MW 302 (MW302 PAHs) to activate the aryl hydrocarbon receptor (AhR), since this represents a major toxic mode of action of PAHs. A large number of the evaluated compounds exhibited strong AhR-mediated activities, in particular in human models. The studied MW302 PAHs also significantly contributed to the overall calculated AhR activities of complex environmental mixtures, including both defined standard reference materials and collected diesel exhaust particles. The high AhR-mediated activities of representative MW302 PAHs, e.g. naphtho[1,2-k]fluoranthene, corresponded with the modulation of expression of relevant AhR target genes in a human lung cell model, or with the AhR-dependent suppression of cell cycle progression/proliferation in estrogen-sensitive cells. This was in a marked contrast with the limited genotoxicity of the same compound(s). Given the substantial levels of the AhR-activating MW302 PAHs in combustion particles, it seems important to continue to investigate the toxic modes of action of this large group of PAHs associated with airborne particulate matter.
Mostrar más [+] Menos [-]Antibiotic body burden of elderly Chinese population and health risk assessment: A human biomonitoring-based study Texto completo
2020
Zhu, Yitian | Liu, Kaiyong | Zhang, Jingjing | Liu, Xinji | Yang, Linsheng | Wei, Rong | Wang, Sufang | Zhang, Dongmei | Xie, Shaoyu | Tao, Fangbiao
Recently, the widespread use of antibiotic has raised concerns about the potential health risks associated with their microbiological effect. In the present study, we investigated 990 elderly individuals (age ≥ 60 years) from the Cohort of Elderly Health and Environment Controllable Factors in West Anhui, China. A total of 45 representative antibiotics and two antibiotic metabolites were monitored in urine samples through liquid chromatography electrospray tandem mass spectrometry. The results revealed that 34 antibiotics were detected in 93.0% of all urine samples and the detection frequencies of each antibiotic varied between 0.2% and 35.5%. The overall detection frequencies of seven human antibiotics (HAs), 10 veterinary antibiotics (VAs), three antibiotics preferred as HAs (PHAs), and 14 preferred as VAs (PVAs) in urines were 27.4%, 62.9%, 30.9% and 72.7%, respectively. Notably, the samples with concentrations of six PVAs (sulfamethoxazole, trimethoprim, oxytetracycline, danofloxacin, norfloxacin and lincomycin) above 5000 ng/mL accounted for 1.7% of all urine samples. Additionally, in 62.7% of urine samples, the total antibiotic concentration was in the range of the limits of detection to 20.0 ng/mL. Furthermore, the elderly individuals with the sum of estimated daily intakes of VAs and PVAs more than 1 μg/kg/day accounted for 15.2% of all participants, and a health risk related to change in gut microbiota under antibiotic stimulation was expected in 6.7% of the elderly individuals. Especially, ciprofloxacin was the foremost contributor to the health risk, and its hazard quotient value was more than one in 3.5% of all subjects. Taken together, the elderly Chinese people were extensively exposed to VAs, and some elderly individuals may have a health risk associated with dysbiosis of the gut microbiota.
Mostrar más [+] Menos [-]