Refinar búsqueda
Resultados 841-850 de 5,149
Plastic litter from shotgun ammunition on Danish coastlines – Amounts and provenance Texto completo
2018
Kanstrup, Niels | Balsby, Thorsten J.S.
Plastic litter in the marine environment is a major global issue. Discarded plastic shotgun ammunition shells and discharged wads are an unwelcome addition and feature among the top ten litter items found on reference beaches in Denmark.To understand this problem, its scale and origins, collections were made by volunteers along Danish coastal shorelines. In all 3669 plastic ammunition items were collected at 68 sites along 44.6 km of shoreline. The collected items were scored for characteristic variables such as gauge and length, shot type, and the legibility of text, the erosion, and the presence of metallic components. Scores for characteristics were related to the site, area, and season and possible influences discussed.The prevalence of collected plastic shotgun litter ranges from zero to 41 items per 100 m with an average of 3.7 items per 100 m. Most ammunition litter on Danish coasts originates from hunting on Danish coastal waterbodies, but a small amount may come from further afield. North Sea coasts are the most distinctive suggesting the possible contribution of long distance drift as well as the likelihood that such litter can persist in marine habitats for decades.The pathway from initial discard to eventual wash-up and collection depends on the physical properties of plastic components, marine tides and currents, coastal topography and shoreline vegetation.Judging from the disintegration of the cartridge and the wear and decomposition of components, we conclude that there is a substantial supply of polluting plastic ammunition materials that has and will accumulate. These plastic items pose a hazard to marine ecosystems and wash up on coasts for many years to come. We recommend that responsible managers, hunters and ammunition manufacturers will take action now to reduce the problem and, thereby, protect ecosystems, wildlife and the sustainability of hunting.
Mostrar más [+] Menos [-]The contribution of socioeconomic factors to PM2.5 pollution in urban China Texto completo
2018
Jiang, Peng | Yang, Jun | Huang, Conghong | Liu, Huakui
PM₂.₅ pollution poses severe health risks to urban residents in low and middle-income countries. Existing studies have shown that the problem is affected by multiple socioeconomic factors. However, the relative contribution of these factors is not well understood, which sometimes leads to controversial controlling measures. In this study, we quantified the relative contribution of different socioeconomic factors, including the city size, industrial activities, and residents' activities, to PM₂.₅ pollution in urban China between 2014 and 2015 by using structural equation model (SEM). Our results showed that industrial activities contributed more to PM₂.₅ pollution than other factors. The city size and residents’ activities also had significant impacts on PM₂.₅ pollution. The combined influence of all socioeconomic factors could explain between 44% and 48% of variation in PM₂.₅ pollution, which indicated the existence of influences from other factors such as weather conditions and outside sources of pollutants. Findings from our study can contribute to a more comprehensive understanding of the socioeconomic causes of PM₂.₅ pollution.
Mostrar más [+] Menos [-]Comparison of moss and pine needles as bioindicators of transboundary polycyclic aromatic hydrocarbon pollution in central Japan Texto completo
2018
Oishi, Yoshitaka
Atmospheric pollution by polycyclic aromatic hydrocarbons (PAHs) has become a serious problem, especially in Asia, as PAHs can severely affect ecologically important mountainous areas. Using pine needles and mosses as bio-indicators, this study examined PAH pollution in a mountainous study area and evaluated the influence of transboundary PAHs. PAHs in urban areas were also evaluated for comparison. The study sites were alpine areas and urban areas (inland or coastal cities) across central Japan, in the easternmost part of Asia where atmospheric pollutants are transported from mainland Asia. The mean PAH concentrations of pine needles and mosses were 198.9 ± 184.2 ng g⁻¹ dry weight (dw) and 131.8 ± 60.7 ng g⁻¹ dw (mean ± SD), respectively. Pine needles preferentially accumulated PAHs with low molecular weights (LMW PAHs) and exhibited large differences in both PAH concentration and isomer ratios between alpine and urban sites. These differences can be explained by the strong influence of LMW PAHs emitted from domestic sources, which decreased and changed during transport from urban to alpine sites due to dry/wet deposition and photodegradation. In contrast, mosses accumulated a higher ratio of PAHs with high molecular weight (HMW PAHs). A comparison of isomer ratios showed that the PAH source for alpine moss was similar to that for northern coastal cities, which are typically influenced by long-transported PAHs from East Asia. Thus, these results indicate that alpine moss can also be strongly affected by the transboundary PAHs. It is likely that the uptake characteristics of moss, alpine climate, and alpine locations far from urban areas can strengthen the influence of transboundary pollution. Based on these results, the limitations and most effective use of bioindicators of PAH pollution for preserving alpine ecosystems are discussed.
Mostrar más [+] Menos [-]Enhanced H3K4me3 modifications are involved in the transactivation of DNA damage responsive genes in workers exposed to low-level benzene Texto completo
2018
Li, Jie | Xing, Xiumei | Zhang, Xinjie | Liang, Boxuan | He, Zhini | Gao, Chen | Wang, Shan | Wang, Fangping | Zhang, Haiyan | Zeng, Shan | Fan, Junling | Chen, Liping | Zhang, Zhengbao | Zhang, Bo | Liu, Caixia | Wang, Qing | Lin, Weiwei | Dong, Guanghui | Tang, Huanwen | Chen, Wen | Xiao, Yongmei | Li, Daochuan
In this study, we explore whether altered global histone modifications respond to low-level benzene exposure as well as their association with the hematotoxicity. We recruited 147 low-level benzene-exposed workers and 122 control workers from a petrochemical factory in Maoming City, Guangdong Province, China. The internal exposure marker level, urinary S-phenylmercapturic acid (SPMA), in benzene-exposed workers was 1.81-fold higher than that of the controls (P < 0.001). ELISA method was established to examine the specific histone modifications in human peripheral blood lymphocytes (PBLCs) of workers. A decrease in the counts of white blood cells (WBC), neutrophils, lymphocytes, and monocytes appeared in the benzene-exposed group (all P < 0.05) compared to the control group. Global trimethylated histone 3 lysine 4 (H3K4me3) modification was enhanced in the benzene-exposed group (P < 0.05) and was positively associated with the concentration of urinary SPMA (β = 0.103, P = 0.045) and the extent of DNA damage (% Tail DNA: β = 0.181, P = 0.022), but was negatively associated with the leukocyte count (WBC: β = −0.038, P = 0.023). The in vitro study revealed that H3K4me3 mark was enriched in the promoters of several DNA damage responsive (DDR) genes including CRY1, ERCC2, and TP53 in primary human lymphocytes treated with hydroquinone. Particularly, H3K4me3 modification was positively correlated with the expression of CRY1 in the PBLCs of benzene-exposed workers. These observations indicate that H3K4me3 modification might mediate the transcriptional regulation of DDR genes in response to low-dose benzene exposure.
Mostrar más [+] Menos [-]Significance of metallothioneins in differential cadmium accumulation kinetics between two marine fish species Texto completo
2018
Le Croizier, Gaël | Lacroix, Camille | Artigaud, Sébastien | Le Floch, Stéphane | Raffray, Jean | Penicaud, Virginie | Coquillé, Valérie | Autier, Julien | Rouget, Marie-Laure | Le Bayon, Nicolas | Lae, R. (Raymond) | Tito De Morais, Luis
Significance of metallothioneins in differential cadmium accumulation kinetics between two marine fish species Texto completo
2018
Le Croizier, Gaël | Lacroix, Camille | Artigaud, Sébastien | Le Floch, Stéphane | Raffray, Jean | Penicaud, Virginie | Coquillé, Valérie | Autier, Julien | Rouget, Marie-Laure | Le Bayon, Nicolas | Lae, R. (Raymond) | Tito De Morais, Luis
Impacted marine environments lead to metal accumulation in edible marine fish, ultimately impairing human health. Nevertheless, metal accumulation is highly variable among marine fish species. In addition to ecological features, differences in bioaccumulation can be attributed to species-related physiological processes, which were investigated in two marine fish present in the Canary Current Large Marine Ecosystem (CCLME), where natural and anthropogenic metal exposure occurs. The European sea bass Dicentrarchus labrax and Senegalese sole Solea senegalensis were exposed for two months to two environmentally realistic dietary cadmium (Cd) doses before a depuration period. Organotropism (i.e., Cd repartition between organs) was studied in two storage compartments (the liver and muscle) and in an excretion vector (bile). To better understand the importance of physiological factors, the significance of hepatic metallothionein (MT) concentrations in accumulation and elimination kinetics in the two species was explored. Accumulation was faster in the sea bass muscle and liver, as inferred by earlier Cd increase and a higher accumulation rate. The elimination efficiency was also higher in the sea bass liver compared to sole, as highlighted by greater biliary excretion. In the liver, no induction of MT synthesis was attributed to metal exposure, challenging the relevance of using MT concentration as a biomarker of metal contamination. However, the basal MT pools were always greater in the liver of sea bass than in sole. This species-specific characteristic might have enhanced Cd biliary elimination and relocation to other organs such as muscle through the formation of more Cd/MT complexes. Thus, MT basal concentrations seem to play a key role in the variability observed in terms of metal concentrations in marine fish species.
Mostrar más [+] Menos [-]Significance of metallothioneins in differential cadmium accumulation kinetics between two marine fish species Texto completo
2018
Le Croizier, Gael | Lacroix, Camille | Artigaud, Sebastien | Le Floch, Stephane | Raffray, Jean | Penicaud, Virginie | Coquille, Valerie | Autier, Julien | Rouget, Marie-laure | Le Bayon, Nicolas | Lae, Raymond | De Morais, Luis Tito
Impacted marine environments lead to metal accumulation in edible marine fish, ultimately impairing human health. Nevertheless, metal accumulation is highly variable among marine fish species. In addition to ecological features, differences in bioaccumulation can be attributed to species-related physiological processes, which were investigated in two marine fish present in the Canary Current Large Marine Ecosystem (CCLME), where natural and anthropogenic metal exposure occurs. The European sea bass Dicentrarchus labrax and Senegalese sole Solea senegalensis were exposed for two months to two environmentally realistic dietary cadmium (Cd) doses before a depuration period. Organotropism (i.e., Cd repartition between organs) was studied in two storage compartments (the liver and muscle) and in an excretion vector (bile). To better understand the importance of physiological factors, the significance of hepatic metallothionein (MT) concentrations in accumulation and elimination kinetics in the two species was explored. Accumulation was faster in the sea bass muscle and liver, as inferred by earlier Cd increase and a higher accumulation rate. The elimination efficiency was also higher in the sea bass liver compared to sole, as highlighted by greater biliary excretion. In the liver, no induction of MT synthesis was attributed to metal exposure, challenging the relevance of using MT concentration as a biomarker of metal contamination. However, the basal MT pools were always greater in the liver of sea bass than in sole. This species-specific characteristic might have enhanced Cd biliary elimination and relocation to other organs such as muscle through the formation of more Cd/MT complexes. Thus, MT basal concentrations seem to play a key role in the variability observed in terms of metal concentrations in marine fish species.
Mostrar más [+] Menos [-]Field and laboratory evaluation of DGT for predicting metal bioaccumulation and toxicity in the freshwater bivalve Hyridella australis exposed to contaminated sediments Texto completo
2018
Amato, Elvio D. | Marasinghe Wadige, Chamani P.M. | Taylor, Anne M. | Maher, William A. | Simpson, Stuart L. | Jolley, Dianne F.
The diffusive gradients in thin films (DGT) technique has shown to be a useful tool for predicting metal bioavailability and toxicity in sediments, however, links between DGT measurements and biological responses have often relied on laboratory-based exposures and further field evaluations are required. In this study, DGT probes were deployed in metal-contaminated (Cd, Pb, Zn) sediments to evaluate relationships between bioaccumulation by the freshwater bivalve Hyridella australis and DGT-metal fluxes under both laboratory and field conditions. The DGT-metal flux measured across the sediment/water interface (±1 cm) was useful for predicting significant cadmium and zinc bioaccumulation, irrespective of the type of sediment and exposure. A greater DGT-Zn flux measured in the field was consistent with significantly higher zinc bioaccumulation, highlighting the importance of performing metal bioavailability assessments in situ. In addition, DGT fluxes were useful for predicting the potential risk of sub-lethal toxicity (i.e., lipid peroxidation and lysosomal membrane damage). Due to its ability to account for multiple metal exposures, DGT better predicted bioaccumulation and toxicity than particulate metal concentrations in sediments. These results provide further evidence supporting the applicability of the DGT technique as a monitoring tool for sediment quality assessment.
Mostrar más [+] Menos [-]Sorption mechanisms of neonicotinoids on biochars and the impact of deashing treatments on biochar structure and neonicotinoids sorption Texto completo
2018
Zhang, Peng | Sun, Hongwen | Ren, Chao | Min, Lujuan | Zhang, Huiming
To elucidate the sorption affinity of biochars for neonicotinoid pesticides and the influence of biochar structure on sorption mechanisms therein, 24 biochar samples were obtained by pyrolyzing maize straw and pig manure at pyrolyzing temperatures (PTs) of 200–700 °C and by further deashing them using acids, and the sorption of three typical neonicotinoids, imidacloprid, clothianidin and thiacloprid on untreated and acid-deashed biochars were evaluated. All the biochar samples could efficiently adsorb the three neonicotinoids and multiple mechanisms were involved in sorption. With the increasing PTs, hydrophobic partition sorption increased, but had a declined contribution to the total sorption as revealed by a dual-mode model. Besides hydrophobic partition, specific interactions like cation-π electron donor acceptor (EDA) interactions (only for protonated IMI and CLO) and hydrogen bond and contributed much to the sorption on low-PT (≤500 °C) biochars, while the sorption on those high-PT (>500 °C) biochars mainly depended on pore-filling strengthened by cation-π and p/π-π EDA interactions. Thiacloprid showed stronger sorption on untreated biochars compared to imidacloprid and clothianidin, due to its greater ability to form hydrogen bond and hydrophobic interactions. Acid-deashing treatments increased the relative percentage contents of organic carbon, bulk O, aromaticity and O-containing functional groups, surface area and pore volume of biochars. The ash can bind neonicotinoids by specific interactions but played a negative role in the whole sorption on high-PT biochars by covering the inner sorption sites of organic moieties and blocking the micropores in biochars. The results acquired in the present study will help us to get deep insight in the comprehensive sorption mechanisms of polar pesticides on biochar and the effects of biochar structure.
Mostrar más [+] Menos [-]Improved rice residue burning emissions estimates: Accounting for practice-specific emission factors in air pollution assessments of Vietnam Texto completo
2018
Lasko, Kristofer | Vadrevu, Krishna
In Southeast Asia and Vietnam, rice residues are routinely burned after the harvest to prepare fields for the next season. Specific to Vietnam, the two prevalent burning practices include: a). piling the residues after hand harvesting; b). burning the residues without piling, after machine harvesting. In this study, we synthesized field and laboratory studies from the literature on rice residue burning emission factors for PM2.5. We found significant differences in the resulting burning-practice specific emission factors, with 16.9 g kg−2(±6.9) for pile burning and 8.8 g kg−2(±3.5) for non-pile burning. We calculated burning-practice specific emissions based on rice area data, region-specific fuel-loading factors, combined emission factors, and estimates of burning from the literature. Our results for year 2015 estimate 180 Gg of PM2.5 result from the pile burning method and 130 Gg result from non-pile burning method, with the most-likely current emission scenario of 150 Gg PM2.5 emissions for Vietnam. For comparison purposes, we calculated emissions using generalized agricultural emission factors employed in global biomass burning studies. These results estimate 80 Gg PM2.5, which is only 44% of the pile burning-based estimates, suggesting underestimation in previous studies. We compare our emissions to an existing all-combustion sources inventory, results show emissions account for 14–18% of Vietnam's total PM2.5 depending on burning practice. Within the highly-urbanized and cloud-covered Hanoi Capital region (HCR), we use rice area from Sentinel-1A to derive spatially-explicit emissions and indirectly estimate residue burning dates. Results from HYSPLIT back-trajectory analysis stratified by season show autumn has most emission trajectories originating in the North, while spring has most originating in the South, suggesting the latter may have bigger impact on air quality. From these results, we highlight locations where emission mitigation efforts could be focused and suggest measures for pollutant mitigation. Our study demonstrates the need to account for emissions variation due to different burning practices.
Mostrar más [+] Menos [-]Lead-based paint in children's toys sold on China's major online shopping platforms Texto completo
2018
Shen, Zhengtao | Hou, Deyi | Zhang, Ping | Wang, Yinan | Zhang, Yunhui | Shi, Peili | O'Connor, David
Lead in paint is a major public health concern and has drawn much attention from international organizations such as the World Health Organization (WHO) and the United Nations Environmental Programme (UNEP). However, there is limited research on lead-based paint, especially its use in toys, which poses an explicit health risk to vulnerable children. The present study sampled 100 different toys purchased from the three largest online shopping platforms in China: JD, Taobao (TB) and Tmall (TM). These selected toys have been sold nearly 3 million times in total, suggesting that they may have reached the dwellings of millions of children. It was found that the toys sold by JD and TM, which are considered organized sellers, had average lead concentrations of 25 mg/kg and 32 mg/kg, respectively, much lower than that of toys sold by unorganized sellers on the TB platform, at 219 mg/kg. Approximately 12% of the toys purchased from TB contained paint with total lead concentrations exceeding China's regulatory standard for paints in toy manufacturing, and nearly 36% of the toys purchased from TB exceeded the equivalent US regulatory standard and EU standard. These results suggest that further action is needed to verify the health and safety standards of toys sold by such unorganized sellers. Moreover, this study found that China's regulatory standard (90 mg/kg) based on soluble lead may underestimate the risk posed by lead in paints, and it is suggested that future regulatory thresholds for lead levels in paints for toy manufacture be based on total rather than soluble lead concentrations. The present study also explored various influencing factors on lead concentration, and found that lead concentrations were related to toy price, age group, color, and sales volume.
Mostrar más [+] Menos [-]Nutrient-limited conditions determine the responses of foliar nitrogen and phosphorus stoichiometry to nitrogen addition: A global meta-analysis Texto completo
2018
You, Chengming | Wu, Fuzhong | Yang, Wanqin | Xu, Zhenfeng | Tan, Bo | Yue, Kai | Ni, Xiangyin
To test the hypothesis that nutrient-limited conditions can determine the responses of nitrogen (N) and phosphorus (P) stoichiometry to N addition, a meta-analysis was conducted to identify the different responses of foliar N and P concentrations and N-to-P ratios to N addition under N limitation, N and P co-limitation and P limitation. N addition increased the foliar N-to-P ratios and N concentrations by 46.2% and 30.2%, respectively, under N limitation, by 18.7% and 19.7% under N and P co-limitation, and by 4.7% and 12.9% under P limitation. However, different responses of foliar P concentrations to N addition were observed under different nutrient limitations, and negative, positive, and neutral effects on P concentrations were observed under N limitation, P limitation and N and P co-limitation, respectively. Generally, the effects of N addition on N-to-P ratios and N concentrations in herbaceous plants were dramatically larger than those in woody plants (with the exception of the N-to-P ratio under N limitation), but the opposite situation was true for P concentrations. The changes in N-to-P ratios were closely correlated with the changes in N and P concentrations, indicating that the changes in both N and P concentrations due to N addition can drive N and P stoichiometry, but the relative sizes of the contributions of N and P varied greatly with different nutrient limitations. Specifically, the changes in N-to-P ratios may indicate a minimum threshold, which is consistent with the homeostatic mechanism. In brief, increasing N deposition may aggravate P limitation under N-limited conditions but improve P limitation under P-limited conditions. The findings highlight the importance of nutrient-limited conditions in the stoichiometric response to N addition, thereby advancing our ability to predict global plant growth with increasing N deposition in the future.
Mostrar más [+] Menos [-]