Refinar búsqueda
Resultados 861-870 de 4,937
Levels and profiles of long-chain perfluoroalkyl carboxylic acids in Pacific cod from 14 sites in the North Pacific Ocean Texto completo
2019
Fujii, Yukiko | Tuda, Hayato | Kato, Yoshihisa | Kimura, Osamu | Endo, Tetsuya | Harada, Kouji H. | Koizumi, Akio | Haraguchi, Koichi
We investigated the profiles and levels of perfluoroalkyl carboxylic acid (PFCA) contamination in Pacific cod (Gadus macrocephalus) from the North Pacific Ocean. The mean concentrations of PFCAs containing 8 to 14 carbon atoms (C8–C14) in edible Pacific cod muscle ranged from 216 to 670 pg g⁻¹ wet weight in the Northeast Pacific Ocean (Seattle, Vancouver, Alaska, and Russia), from 819 to 1710 pg g⁻¹ wet weight in Japanese coastal waters (Hokkaido, Aomori, Iwate, Miyagi, Tottori, and Shimane), and from 288 to 892 pg g⁻¹ wet weight in Korean waters (Sokcho, Busan, and Yeosu). These results indicate there are geographical differences in the distribution of PFCAs. The long-chain PFCAs (C9–C14) contributed 96% of the total PFCA concentration across Japan, whereas they contributed only 33% of the total PFCA concentration in the USA and Canada. Long-chain PFCA concentrations in cod samples collected in Japanese and Korean waters were about three to four times those in samples from the USA, Canada, and Russia. Because seafood is considered an important dietary source of PFCAs, high concentrations of long-chain PFCAs in Pacific cod from Japanese and Korean waters may affect human dietary exposure and blood concentrations of long-chain PFCAs.
Mostrar más [+] Menos [-]Improved accuracy of environmentally relevant parameter estimates derived from biodegradation assays Texto completo
2019
Escuder-Gilabert, Laura | Martín-Biosca, Yolanda | Sagrado, Salvador | Medina-Hernández, María José
Biodegradation assays involve both biodegradation and analytical processes which can be affected by systematic errors, among others. These errors can affect all the environmentally relevant parameters related to biodegradability, enantioselectivity (in the case of chiral compounds), kinetic parameters and persistence of chemicals. However, such impacts have never been well-characterized. In this work, calculations and models used for a long time are studied by simulating systematic errors at the 5% level, which affect independently the analytical calibration step and the biodegradation process. The impact of these errors is also compared with those obtained from an alternative approach: recently proposed equations and a novel model (a Monod modified version) developed in this work. All simulations are compatible with an environmentally relevant pollutant concentration. The results suggest a high degree of minimization (or even cancelation) of the systematic error impact using the alternative approach respect to the conventional one. These findings can be interpreted either in view of achiral or chiral pollutants. The present work can have a positive impact in the area of risk assessment of new pollutants and hazardous materials.
Mostrar más [+] Menos [-]Facets of iron in arsenic exposed Oryza sativa varieties: A manifestation of plant’s adjustment at morpho-biochemical and enzymatic levels☆ Texto completo
2019
Panthri, Medha | Gupta, Meetu
Rice consumption is one of the primary sources of arsenic (As) exposure as the grains contain relatively higher concentration of inorganic As. Abundant studies on the ability of iron (Fe) plaque in hampering As uptake by plants has been reported earlier. However, little is known about its role in the mitigation of As mediated oxidative damage in rice plants. The present study highlights the effect of As and Fe co-supplementation on growth response, oxidative stress, Fe uptake related enzymes and nutrient status in rice varieties. Eight different Indica rice varieties were screened and finally four varieties (Varsha, Jaya, PB-1 and IR-64) were selected for detailed investigations. Improved germination and chlorophyll/protein levels during As+Fe co-exposure indicate healthier plants than As(III) treated ones. Interestingly Fe was found act both as an antagonist and also as a synergist of As treatments. It acted by reducing As translocation and improving the nutritional levels and enhancing the oxidative stress. Fe uptake related enzymes (nitrite reductase and ferric chelate reductase) and phytosiderophores analysis revealed that Fe supplementation can reduce its deficiency in rice plants. Morpho-biochemical, oxidative stress and nutrient analysis symbolizes higher tolerance of PB-1 towards As, while Varsha being most sensitive, efficiently combated the As(III) stress in the presence of Fe.
Mostrar más [+] Menos [-]Potential bacterial bioindicators of urban pollution in mangroves Texto completo
2019
Torres, Guillermo G. | Figueroa-Galvis, Ingrid | Muñoz-García, Andrea | Polanía V., Jaime | Vanegas, Javier
Despite their ecological and socioeconomic importance, mangroves are among the most threatened tropical environments in the world. In the past two decades, the world's mangrove degradation and loss were estimated to lie between an 35% and >80%. However, appropriate bioindicators for assessing the impact of external factors, and for differentiating polluted from unpolluted areas are still scarce. Here, we determine the physicochemical profiles of the soils of two mangroves, one exposed to and one not exposed to anthropogenic factors. By metagenomic analysis based on 16S rRNA, we generated the bacterial diversity profiles of the soils and estimated their functional profiles. Our results showed that the two examined mangrove forests differed significantly in the physicochemical properties of the soils, especially regarding organic carbon, phosphorus and metal content, as well as in their microbial communities, which was likely caused by anthropogenic pollution. The physicochemical differences between the soils explained 76% of the differential bacterial composition, and 64% depended solely on gradients of phosphorus, metal ions and potassium. We found two genera JL-ETNP-Z39 and TA06 exclusively in polluted and non-polluted mangroves, respectively. Additionally, the polluted mangrove was enriched in Gemmatimonadetes, Cyanobacteria, Chloroflexi, Firmicutes, Acidobacteria, and Nitrospirae. A total of 77 genera were affected by anthropic contamination, of which we propose 33 as bioindicators; 26 enriched, and 7 depleted upon pollution.
Mostrar más [+] Menos [-]Organic molecular markers in marine aerosols over the Western Mediterranean Sea Texto completo
2019
Romagnoli, Paola | Balducci, Catia | Perilli, Mattia | Esposito, Giulio | Cecinato, Angelo
A scientific campaign was undertaken along the Western sector of the Mediterranean Sea in the summer 2015 (26th Jun to 13th Jul), with the goal of gathering information about organic contaminants affecting marine aerosol over the Italian seas and with a special focus on changes in composition due to sources. 24 PM₁₀ atmospheric samples in total were chemically characterized, including polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons (n-alkanes) and phthalate esters. Contemporarily, regulated gaseous toxicants (i.e. ozone, nitrogen oxides and sulfur dioxide) and meteorological parameters were recorded. Samplings were carried out inshore in front of harbors (N = 7) and along the cruise, both during the vessel shipping (N = 11, transects) and at its stops offshore (N = 6). Total PAH concentrations ranged from 0.03 to 1.94 ng/m³ and raised close to harbors and coastal sites, confirming that continental sources were responsible for the strong increase of pollution levels there compared to offshore. The percent composition and diagnostic ratio rates of PAHs were different for harbors, while transects were in agreement with offshore stops, possibly due to the different impact of pollution sources. n-Alkanes (C₂₁C₃₈) and the corresponding carbon preference index rates (CPI) were assessed; their values ranged 8.7–90 ng/m³ and 1.1–2.9 respectively, which suggested that fossil fuel combustion was the dominant source, though biogenic emission could contribute. Alkyl phthalates revealed wide variability in concentrations among aerosol samples. Moreover, long-range atmospheric transport and particle ageing effect induced by photo-oxidants were important factors controlling the composition of organic aerosols in the Mediterranean Sea air.
Mostrar más [+] Menos [-]Anthropogenic influences on mercury in Chinese soil and sediment revealed by relationships with total organic carbon Texto completo
2019
Xue, Wen | Kwon, Sae Yun | Grasby, Stephan E. | Sunderland, Elsie M. | Pan, Xin | Sun, Ruiyang | Zhou, Ting | Yan, Haiyu | Yin, Runsheng
Rapid industrialization has led to high levels of mercury (Hg) releases from anthropogenic sources in China. When deposited to terrestrial ecosystems, Hg has a high affinity for natural organic carbon. This means that Hg concentrations will vary naturally as a function of the total organic carbon (TOC) content of different soils and sediment. Thus, Hg to TOC ratios in topsoil and surface sediment provides a useful normalized tracer of the anthropogenic impact on Hg contamination. We compiled literature-documented Hg and total organic carbon (TOC) data for topsoil (n = 957) and surface sediment (n = 1142) in China. Topsoil samples (n = 100) were also collected in this study to broaden the spatial coverage. We found large differences in Hg:TOC ratios among topsoil from background sites, agricultural and urban areas, and mining sites and surface sediment from fluvial, coastal, and marine environments. Specifically, a significant increase in Hg:TOC ratios occurred between soils from background sites (median: Hg:TOC = 21.1; Inter-Quartile Range (IQR): 9.67 to 40.7) and agricultural areas (median: 34.1; IQR: 22.1 to 58.7), urban areas (median: 62.1 ng g−1; IQR: 34.2 to 154) and mining sites (median: 2780; range: 181 to 43500). Urban and mining sites show the largest increase in Hg:TOC ratios, reflecting elevated anthropogenic Hg inputs in these areas. Fluvial sediment showed higher Hg:TOC ratios (median: 197; IQR: 109 to 389) than coastal (median: 88.3; IQR: 46.8 to 168) and marine sediment (median: 89.7; IQR: 53 to 138), indicating decreased anthropogenic Hg input from rivers to coastal and marine regions. Results of our study suggest Hg:TOC ratios are a useful normalized indicator of the influence of anthropogenic Hg releases on Hg enrichment in topsoil and surface sediment.
Mostrar más [+] Menos [-]Bibliometric study of the toxicology of nanoescale zero valent iron used in soil remediation Texto completo
2019
Vanzetto, Guilherme Victor | Thomé, Antonio
The application of nanoscale zero-valent iron is one of the most widely used remediation technologies; however, the potential environmental risks of this technology are largely unknown. In order to broaden the knowledge on this subject, the present work consists of a bibliometric study of all of publications related to the toxicity of zero-valent iron nanoparticles used in soil remediation available from the Scopus (Elsevier) and Web of Science (Thompson Reuters) databases. This study presents a temporal distribution of the publications, the most cited articles, the authors who have made the greatest contribution to the theme, and the institutions, countries, and scientific journals that have published the most on this subject. The use of bibliometrics has allowed for the visualization of a panorama of the publications, providing an appropriate analysis to guide new research towards an effective contribution to science by filling the existing gaps. In particular, the lack of studies in several countries reveals a promising area for the development of further research on this topic.
Mostrar más [+] Menos [-]Comparative analysis on the sorption kinetics and isotherms of fipronil on nondegradable and biodegradable microplastics Texto completo
2019
Gong, Wenwen | Jiang, Mengyun | Han, Ping | Liang, Gang | Zhang, Tingting | Liu, Guannan
Biodegradable plastics have been introduced and widely used as a promising alternative to traditional nondegradable plastics. However, the differences in sorption behavior of pesticides on nondegradable and biodegradable microplastics has been insufficiently studied. Here, four types of nondegradable [polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polypropylene (PP)] and two types of biodegradable [polylactic acid (PLA), polybutylene succinate (PBS)] microplastics were selected to investigate the sorption mechanism of fipronil based on their sorption kinetics and isotherms. The results indicated that the sorption rates of PLA and PBS were much higher than those of PE, PP, PVC and PS and that the sorption capacities of fipronil on microplastics followed the order of PBS > PLA > PP > PE > PS > PVC. The sorption kinetics followed a pseudo-second-order kinetics model (R² = 0.953–0.998) for all tested microplastics. External mass transport and intraparticle diffusion were the main rate controlling steps of the sorption of fipronil on microplastics. Furthermore, isotherm results indicated that a Langmuir model provided the best fit for fipronil sorption on PE, PS, PVC and PP (R² = 0.997–0.999), while a Freundlich model was the most appropriate model for PLA and PBS (R² = 0.998–0.999). The presence of surface O-containing functional groups and the spatial arrangement of rubbery domains are likely to affect the sorption process. The results from this work suggest that microplastics, especially biodegradable ones, may play an important role in the fate and transport of pesticides, and their effects on soil organisms (e.g., earthworms) require further investigation.
Mostrar más [+] Menos [-]Urinary bisphenol analogues concentrations and biomarkers of oxidative DNA and RNA damage in Chinese school children in East China: A repeated measures study Texto completo
2019
Zhou, Ying | Yao, Yuan | Shao, Yijun | Qu, Weidong | Chen, Yue | Jiang, Qingwu
The associations between bisphenol analogues (BPs) exposure and oxidative damage was explored in this 3-year longitudinal study of 275 school children in East China. Nine BPs in first morning urine samples were measured to assess BPs exposure, and 8-hydroxydeoxyguanosine (8-OHdG) and 8-oxo-7,8-dihydroguanosine (8-OHG) were measured as biomarkers of oxidative DNA and RNA damage. Linear mixed model (LMM) was used for repeated measures analysis. School children were mainly exposed to BPA, BPS, BPF, and BPAF (detection frequencies: 97.9%, 42.2%, 13.3%, and 12.8%) with median concentrations of 1.55, 0.355, 0.236 and 0.238 μg g⁻¹Cᵣₑ, respectively. An interquartile range (IQR) increase in urinary BPA was significantly associated with 12.9% (95% CI: 6.1%, 19.6%) increase in 8-OHdG and 19.4% (95% CI: 11.7%, 27.1%) increase in 8-OHG, and for total of BPs (the sum of BPA, BPS, BPF, and BPAF), they were 17.4% (95% CI: 8.9%, 26.0%) for 8-OHdG and 25.9% (95% CI: 16.1%, 35.7%) for 8-OHG, respectively. BPS was positively associated with 8-OHG, but not with 8-OHdG. The study found positive associations of urinary levels of BPA and total BPs with 8-OHdG and 8-OHG and indicated that BPs exposure might cause oxidative RNA damage.
Mostrar más [+] Menos [-]Tetrabromobisphenol A: Disposition, kinetics and toxicity in animals and humans Texto completo
2019
Yu, Yunjiang | Yu, Ziling | Chen, Haibo | Han, Yajing | Xiang, Mingdeng | Chen, Xichao | Ma, Ruixue | Wang, Zheng-Dong
Tetrabromobisphenol A (TBBPA) is a nonregulated brominated flame retardant with a high production volume, and it is applied in a wide variety of consumer products. TBBPA is ubiquitous in abiotic matrices, wildlife and humans around the world. This paper critically reviews the published scientific data concerning the disposition, metabolism or kinetics and toxicity of TBBPA in animals and humans. TBBPA is rapidly absorbed and widely distributed among tissues, and is excreted primarily in the feces. In rats, TBBPA and its metabolites have limited systemic bioavailability. TBBPA has been detected in human milk in the general population. It is available to both the developing fetus and the nursing pups following maternal exposure. It has been suggested that TBBPA causes acute toxicity, endocrine disruptor activity, immunotoxicity, neurotoxicity, nephrotoxicity, and hepatotoxicity in animals. Cell-based assays have shown that TBBPA can induce reactive oxygen species in a concentration-dependent manner, and it promotes the production of inflammatory factors such as TNF α, IL-6, and IL-8. Cells exposed to high levels of TBBPA exhibit seriously injured mitochondria and a dilated smooth endoplasmic reticulum. This review will enhance the understanding of the potential risks of TBBPA exposure to ecological and human health.
Mostrar más [+] Menos [-]