Refinar búsqueda
Resultados 871-880 de 7,214
A critical review on biochar-assisted free radicals mediated redox reactions on the transformation and reduction of potentially toxic metals: Occurrence, formation, and environmental applications
2022
Rashid, Muhammad Saqib | Liu, Guijian | Yousaf, Balal | Hamid, Yasir | Rehman, Abdul | Arif, Muhammad | Ahmed, Rafay | Ashraf, Aniqa | Song, Yu
Potentially toxic metals have become a viable threat to the ecosystem due to their carcinogenic nature. Biochar has gained substantial interest due to its redox-mediated processes and redox-active metals. Biochar has the capacity to directly adsorb the pollutants from contaminated environments through several mechanisms such as coprecipitation, complexation, ion exchange, and electrostatic interaction. Biochar's electron-mediating potential may be influenced by the cyclic transition of surface moieties and conjugated carbon structures. Thus, pyrolysis configuration, biomass material, retention time, oxygen flow, and heating time also affect biochar's redox properties. Generally, reactive oxygen species (ROS) exist as free radicals (FRs) in radical and non-radical forms, i.e., hydroxyl radical, superoxide, nitric oxide, hydrogen peroxide, and singlet oxygen. Heavy metals are involved in the production of FRs during redox-mediated reactions, which may contribute to ROS formation. This review aims to critically evaluate the redox-mediated characteristics of biochar produced from various biomass feedstocks under different pyrolysis conditions. In addition, we assessed the impact of biochar-assisted FRs redox-mediated processes on heavy metal immobilization and mobility. We also revealed new insights into the function of FRs in biochar and its potential uses for environment-friendly remediation and reducing the dependency on fossil-based materials, utilizing local residual biomass as a raw material in terms of sustainability.
Mostrar más [+] Menos [-]Chronic exposure to environmentally relevant levels of di(2-ethylhexyl) phthalate (DEHP) disrupts lipid metabolism associated with SBP-1/SREBP and ER stress in C. elegans
2022
How, Chun Ming | Hsiu-Chuan Liao, Vivian
DEHP is commonly found in the environment, biota, food, and humans, raising significant health concerns. Whether developmental stage and exposure duration modify the obesogenic effects of DEHP is unclear, especially the underlying mechanisms by which chronic exposure to DEHP as well as its metabolites remain largely unknown. This study investigated the obesogenic effects of chronic DEHP exposure, with levels below environmentally-relevant amounts and provide the mechanism in Caenorhabditis elegans. We show that early-life DEHP exposure resulted in an increased lipid and triglyceride (TG) accumulation mainly attributed to DEHP itself, not its metabolite mono-2-ethylhexyl phthalate (MEHP). In addition, developmental stage and exposure timing influence DEHP-induced TG accumulation and chronic DEHP exposure resulted in the most significant effect. Analysis of fatty acid composition shows that chronic DEHP exposure altered fatty acid composition and TG, resulting in an increased ω-6/ω-3 ratio. The increased TG content by chronic DEHP exposure required lipogenic genes fat-6, fat-7, pod-2, fasn-1, and sbp-1. Moreover, chronic DEHP exposure induced XBP-1-mediated endoplasmic reticulum (ER) stress which might lead to up-regulation of sbp-1. This study suggests the possible involvement of ER stress and SBP-1/SREBP-mediated lipogenesis in chronic DEHP-induced obesogenic effects. Results from this study implies that chronic exposure to DEHP disrupts lipid metabolism, which is likely conserved across species due to evolutionary conservation of molecular mechanisms, raising concerns in ecological and human health.
Mostrar más [+] Menos [-]Insights into the impacts of dissolved organic matter of different origins on bioaccumulation and translocation of per- and polyfluoroalkyl substances (PFASs) in wheat
2022
Liu, Siqian | Zhou, Jian | Guo, Jia | Gao, Juefu | Jia, Yibo | Li, Shunli | Wang, Tiecheng | Zhu, Lingyan
Per- and polyfluoroalkyl substances (PFASs) have been found to be widely present in soil. Dissolved organic matter (DOM) in soil are supposed to greatly affect the bioavailability of PFASs in soil. Herein, hydroponic experiments were conducted to understand the impacts of two kinds of typical DOM, bovine serum albumin (BSA) and humic acid (HA), on the uptake and translocation of legacy PFASs and their emerging alternatives, perfluorooctane sulfonic acid (PFOS), perfluorooctane acid (PFOA), perfluorohexane sulfonic (PFHxS) and 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA) in wheat (Triticum aestivum L.). The results indicated that both HA and BSA significantly inhibited the bioaccumulation and translocation of PFASs in the roots and shoots of wheat, and the impacts of BSA were greater than HA. This difference was explained by the greater binding affinities of the four PFASs with BSA than with HA, as evidenced by the equilibrium dialysis and isothermal titration calorimetry (ITC) analyses. It was noting that inhibition impacts of the BSA-HA mixture (1:1) were lower than BSA alone. The results of Fourier transform infrared (FT-IR) spectroscopy and excitation-emission matrix (EEM) fluorescence spectroscopy suggested that HA could bind with the fluorescent tryptophan residues in BSA greatly, competing the binding sites with PFASs and forming a cover on the surface of BSA. As a result, the binding of PFASs with BSA-HA complex was much lower than that with BSA, but close to HA. The results of this study shed light on the impacts of DOM in soil on the bioaccumulation and translocation of PFASs in plants.
Mostrar más [+] Menos [-]Toxicokinetics of three insecticides in the female adult solitary bee Osmia bicornis
2022
Mokkapati, Jaya Sravanthi | Bednarska, Agnieszka J. | Choczyński, Maciej | Laskowski, Ryszard
The worldwide decline of pollinators is of growing concern and has been related to the use of insecticides. Solitary bees are potentially exposed to many insecticides through contaminated pollen and/or nectar. The kinetics of these compounds in solitary bees is, however, unknown, limiting the use of these important pollinators in pesticide regulations. Here, the toxicokinetics (TK) of chlorpyrifos (as Dursban 480 EC), cypermethrin (Sherpa 100 EC), and acetamiprid (Mospilan 20 SP) was studied for the first time in Osmia bicornis females at sublethal concentrations (near LC₂₀ₛ). The TK of the insecticides was analysed in bees continuously exposed to insecticide-contaminated food in the uptake phase followed by feeding with clean food in the decontamination phase. The TK models differed substantially between the insecticides. Acetamiprid followed the classic one-compartment model with gradual accumulation during the uptake phase followed by depuration during the decontamination phase. Cypermethrin accumulated rapidly in the first two days and then its concentration decreased slowly. Chlorpyrifos accumulated similarly rapidly but no substantial depuration was found until the end of the experiment. Our study demonstrates that some insecticides can harm solitary bees when exposed continuously even at trace concentrations in food because of their constant accumulation leading to time-reinforced toxicity.
Mostrar más [+] Menos [-]Microplastics in plant-soil ecosystems: A meta-analysis
2022
Zhang, Yanyan | Cai, Chen | Gu, Yunfu | Shi, Yuanshuai | Gao, Xuesong
Microplastic pollution is a recognized hazard in aquatic systems, but in the past decade has emerged as a pollutant of interest in terrestrial ecosystems. This paper is the first formal meta-analysis to examine the phytotoxic effects of microplastics and their impact on soil functions in the plant-soil system. Our specific aims were to: 1) determine how the type and size of microplastics affect plant and soil health, 2) identify which agricultural plants are more sensitive to microplastics, and 3) investigate how the frequency and amount of microplastic pollution affect soil functions. Plant morphology, antioxidant production and photosynthesis capacity were impacted by the composition of polymers in microplastics, and the responses could be negative, positive or neutral depending on the polymer type. Phytotoxicity testing revealed that maize (Zea mays) was more sensitive than rice (Oryza sativa) and wheat (Triticum aestivum) within the Poaceae family, while wheat and lettuce (Lactuca sativa) were less sensitive to microplastics exposure. Microplastics-impacted soils tend to be more porous and retain more water, but this did not improve soil stability or increase soil microbial diversity, suggesting that microplastics occupied physical space but were not integrated into the soil biophysical matrix. The meta-data revealed that microplastics enhanced soil evapotranspiration, organic carbon, soil porosity, CO₂ flux, water saturation, nitrogen content and soil microbial biomass, but decreased soil N₂O flux, water stable aggregates, water use efficiency, soil bulk density and soil microbial diversity.
Mostrar más [+] Menos [-]Copper stress in grapevine: Consequences, responses, and a novel mitigation strategy using 5-aminolevulinic acid
2022
Yang, Yuxian | Fang, Xiang | Chen, Mengxia | Wang, Lingyu | Xia, Jiaxin | Wang, Zicheng | Fang, Jinggui | Tran, Lam-son Phan | Shangguan, Lingfei
Improper application of copper-based fungicides has made copper stress critical in viticulture, necessitating the need to identify substances that can mitigate it. In this study, leaves of ‘Shine Muscat’ (‘SM’) grapevine seedlings were treated with CuSO₄ solution (10 mM/L), CuSO₄ + 5-aminolevulinic acid (ALA) (50 mg/L), and distilled water to explore the mitigation effect of ALA. Physiological assays demonstrated that ALA effectively reduced malondialdehyde accumulation and increased peroxidase and superoxide dismutase activities in grapevine leaves under copper stress. Copper ion absorption, transport pathways, chlorophyll metabolism pathways, photosynthetic system, and antioxidant pathways play key roles in ALA alleviated-copper stress. Moreover, expression changes in genes, such as CHLH, ALAD, RCA, and DHAR, play vital roles in these processes. Furthermore, abscisic acid reduction caused by NCED down-regulation and decreased naringenin, leucopelargonidin, and betaine contents confirmed the alleviating effect of ALA. Taken together, these results reveal how grapevine responds to copper stress and the alleviating effects of ALA, thus providing a novel means of alleviating copper stress in viticulture.
Mostrar más [+] Menos [-]Biochemical toxicity and transcriptome aberration induced by dinotefuran in Bombyx mori
2022
Xu, Shiliang | Hao, Zhihua | Li, Yinghui | Zhou, Yanyan | Shao, Ruixi | Chen, Rui | Zheng, Meidan | Xu, Yusong | Wang, Huabing
Dinotefuran is a third-generation neonicotinoid pesticide and is increasingly used in agricultural production, which has adverse effects on nontarget organisms. However, the research on the impact of dinotefuran on nontarget organisms is still limited. Here the toxic effects of dinotefuran on an important economic species and a model lepidopteran insect, Bombyx mori, were investigated. Exposure to different doses of dinotefuran caused physiological disorders or death. Cytochrome P450, glutathione S-transferase, carboxylesterase, and UDP glycosyl-transferase activities were induced in the fat body at early stages after dinotefuran exposure. By contrast, only glutathione S-transferase activity was increased in the midgut. To overcome the lack of sensitivity of the biological assays at the individual organism level, RNA sequencing was performed to measure differential expressions of mRNA from silkworm larvae after dinotefuran exposure. Differential gene expression profiling revealed that various detoxification enzyme genes were significantly increased after dinotefuran exposure, which was consistent with the upregulation of the detoxifying enzyme. The global transcriptional pattern showed that the physiological responses induced by dinotefuran toxicity involved multiple cellular processes, including energy metabolism, oxidative stress, detoxification, and other fundamental physiological processes. Many metabolism processes, such as carbon metabolism, fatty acid biosynthesis, pyruvate metabolism, and the citrate cycle, were partially repressed in the midgut or fat body. Furthermore, dinotefuran significantly activated the MAPK/CREB, CncC/Keap1, PI3K/Akt, and Toll/IMD pathways. The links between physiological, biochemical toxicity and comparative transcriptomic analysis facilitated the systematic understanding of the integrated biological toxicity of dinotefuran. This study provides a holistic view of the toxicity and detoxification metabolism of dinotefuran in silkworm and other organisms.
Mostrar más [+] Menos [-]Epigenome–wide DNA methylation signature of plasma zinc and their mediation roles in the association of zinc with lung cancer risk
2022
Meng, Hua | Wei, Wei | Li, Guyanan | Fu, Ming | Wang, Chenming | Hong, Shiru | Guan, Xin | Bai, Yansen | Feng, Yue | Zhou, Yuhan | Cao, Qiang | Yuan, Fangfang | He, Meian | Zhang, Xiaomin | Wei, Sheng | Li, Yangkai | Kwok, Woon
Essential trace element zinc is associated with decreased lung cancer risk, but underlying mechanisms remain unclear. This study aimed to investigate role of DNA methylation in zinc-lung cancer association. We conducted a case-cohort study within prospective Dongfeng-Tongji cohort, including 359 incident lung cancer cases and a randomly selected sub–cohort of 1399 participants. Epigenome-wide association study (EWAS) was used to examine association of plasma zinc with DNA methylation in peripheral blood. For the zinc-related CpGs, their mediation effects on zinc-lung cancer association were assessed; their diagnostic performance for lung cancer was testified in the case-cohort study and further validated in another 126 pairs of lung cancer case-control study. We identified 28 CpGs associated with plasma zinc at P < 1.0 × 10⁻⁵ and seven of them (cg07077080, cg01077808, cg17749033, cg15554270, cg26125625, cg10669424, and cg15409013 annotated to GSR, CALR3, SLC16A3, PHLPP2, SLC12A8, VGLL4, and ADAMTS16, respectively) were associated with incident risk of lung cancer. Moreover, the above seven CpGs were differently methylated between 126 pairs of lung cancer and adjacent normal lung tissues and had the same directions with EWAS of zinc. They could mediate a separate 7.05%∼22.65% and a joint 29.42% of zinc-lung cancer association. Compared to using traditional factors, addition of methylation risk score exerted improved discriminations for lung cancer both in case-cohort study [area under the curve (AUC) = 0.818 vs. 0.738] and in case-control study (AUC = 0.816 vs. 0.646). Our results provide new insights for the biological role of DNA methylation in the inverse association of zinc with incident lung cancer.
Mostrar más [+] Menos [-]The spectral characteristics and cadmium complexation of soil dissolved organic matter in a wide range of forest lands
2022
Zhang, Xiaoqing | Li, Ya | Ye, Jun | Chen, Zhihua | Ren, Dajun | Zhang, Shuqin
The quality and quantity of dissolved organic matter (DOM) greatly controls the fate of heavy metals. The characteristics of DOM and its interaction with metals are essential for the metal ecological risk assessment of soils. In this study, the DOM spectral characteristics of representative forest soils and the complex capacities between fluorescent DOM components and cadmium (Cd) were analyzed. Functional groups, such as carboxylic acids, alcohols and phenols, were determined by FT-IR analysis. Chromophoric DOM, fluorescent DOM and dissolved organic carbon (DOC) concentrations exhibited strong correlations with each other, indicating that variations of DOC could be well explained by Chromophoric DOM or fluorescent DOM due to high correlation coefficients. The spectral slope ratio was in the range of 0.85–5.90, implying an abundance of heavy macromolecular humic acids, peptides, and polycondensates. The absorbance spectral at 254 nm (SUVA₂₅₄) strongly correlated with SUVA₂₆₀ (r = 0.992, P < 0.01), indicating that hydrophobicity closely related with aromatic structure, and aromatic groups could be broadly hydrophobic. Fluorescence indices were from 1.62 to 2.21 and biological index values ranged from 0.54 to 1.14, where the DOM was mainly sourced from mixed terrestrial and autogenous inputs in most sites. Four universal fluorescence components were identified and characterized by fluorescence EEM-PARAFAC, including two humic-like (components 1 and 2), one tyrosine-like (components 3) and one fulvic-like (components 4) component. Both components 3 and 4 showed fluorescence quenching with increasing Cd concentrations, while components 1 and 2 had no evident change in fluorescence intensity. The logK₃ and logK₄ values ranged from 4.41 to 5.29 and 4.71 to 5.54, respectively, with most logK values of component 3 for Cd binding being smaller than that of component 4, thus, indicating that the fulvic acid substances exhibited stronger and more stable interactions with Cd than protein-like components.
Mostrar más [+] Menos [-]Response and contribution of bacterial and archaeal communities to eutrophication in urban river sediments
2022
Yang, Juejie | Li, Guanghe | Sheng, Yizhi | Zhang, Fang
Excessive loading of nitrogen (N) and phosphorus (P) that leads to eutrophication mutually interacts with sediment microbial community. To unravel the microbial community structures and interaction networks in the urban river sediments with the disturbance of N and P loadings, we used high-throughput sequencing analysis and ecological co-occurrence network methods to investigate the responses of diversity and community composition of bacteria and archaea and identify the keystone species in river sediments. The alpha-diversity of archaea significantly decreased with the increased total nitrogen (TN), whereas the operational taxonomic unit (OTU) number of bacteria increased with the increase of available phosphorus (AP). The beta-diversity of archaea and bacteria was more sensitive to N content than P content. The relative abundance of predominant bacterial and archaeal taxa varied differently in terms of different N and P contents. Complexity and connectivity of bacteria and archaea interaction networks showed significant variations with eutrophication, and competition between bacteria became more significant with the increase of N content. The sensitive and the highest connective species (keystone species) were identified for different N and P loadings. Total carbon (TC), water content (WC), microbial alpha-diversity and interaction networks played pivotal roles in the N and P transformation in urban river sediments.
Mostrar más [+] Menos [-]