Refinar búsqueda
Resultados 881-890 de 6,535
Dissolved organic matter does not promote glyphosate degradation in auto-heterotrophic aquatic microbial communities
2020
Artigas, Joan | Batisson, Isabelle | Carles, Louis
Environmental dissolved organic matter (DOM) has been proved to increase microbial population sizes and stimulate the degradation of some pesticide molecules. Among these molecules, the present study investigated the biodegradation of the herbicide glyphosate depending on photoautotrophs DOM supply in a microbial consortium isolated from river biofilms. Degradation experiments in the laboratory were performed in dark and light conditions, as well as after antibiotic supply, in order to characterize the eventual interactions between photoautotrophs and heterotrophs activity during glyphosate degradation. Fifty percent of the initial concentration of glyphosate (0.6 mM) was transformed into aminomethyl phosphonic acid (AMPA) after 9 days in presence or absence of light. Accordingly, the photoautotrophic DOM supply was not stimulating glyphosate degradation by microbial heterotrophs. This lack of response was probably explained by the low net primary production values and weak dissolved organic carbon production recorded in light treatments. The supply of the antibiotic drastically stopped glyphosate transformation demonstrating the central role of bacteria in the biodegradation of the herbicide. Glyphosate also modified the structure of prokaryotes assemblages in the consortium by increasing the relative abundances of Alphaproteobacteria and slightly decreasing those of Gammaproteobacteria. The chemoorganotrophic bacteria Phenylobacterium sp. (Alphaproteobacteria) was related to the transformation of glyphosate in our microbial consortium. The present study highlights the complexity of microbial interactions between photoautotrophs and heterotrophs in microbial assemblages that can contribute to the degradation of pesticides present in aquatic environments.
Mostrar más [+] Menos [-]Occurrence, distribution and size relationships of plastic debris along shores and sediment of northern Lake Victoria
2020
Egessa, Robert | Nankabirwa, Angela | Basooma, Rose | Nabwire, Racheal
Plastic pollution has been reported in sediment, surface water and biota of freshwater systems especially in Europe, North and South America, and Asia with limited studies focussing on African great lakes. This study therefore investigated the occurrence, abundance and distribution of micro-, meso- and macro-plastic debris along shores and sediment of northern Lake Victoria. The abundance of micro-, meso- and macro-plastics measured as particles/kg dry sediment were in range of 0–1102, 0–218 and 0–100 respectively in shoreline sediment and 0–108, 0–33 and 0–77 respectively in lake sediment. The mean abundance of micro-, meso- and macro-plastic debris at fish landing beaches (75.2 ± 50.0, 16.7 ± 8.1 and 18.1 ± 4.6 respectively) were higher than what was recorded at recreational beaches (1.5 ± 0.6, 3.1 ± 3.1 and 3.8 ± 3.8 respectively). Similarly, mean abundance of micro-, meso- and macro-plastic debris in lake sediment were higher in areas of fish landing beaches (9.5 ± 2.6, 2.1 ± 1.5 and 7.7 ± 4.5 respectively) than what was recorded in areas of recreational beaches (0.7 ± 0.7, 0.2 ± 0.1, and 0 ± 0 respectively). Films, filaments, fragments, foam and pellets were the plastic types, with the shoreline sediment dominated by films (>54%) while lake sediment was dominated by filaments (>55%), across size groups (micro-, meso- and macro-plastics). Spearman’s rank correlation indicated strong and significant correlation between abundance of micro- and meso-plastics for total plastic, film plastic and fragment plastic in shoreline sediment. Significant correlation between macroplastics in shoreline sediment and microplastics in lake sediment for total plastics was observed. The FTIR analysis revealed that polyethylene, polypropylene, Polyethylene Terephthalate, Polyamide (nylon), and polyvinyl chloride were the major polymers. These results demonstrated that fish landing beaches along Lake Victoria are hotspot areas for plastic pollution of the lake and should therefore be targeted for management of plastic pollution of Lake Victoria.
Mostrar más [+] Menos [-]Prediction of selenium uptake by pak choi in several agricultural soils based on diffusive gradients in thin-films technique and single extraction
2020
Peng, Qin | Wang, Dan | Wang, Mengke | Zhou, Fei | Yang, Wenxiao | Liu, Yongxian | Liang, Dongli
The accurate assessment of soil selenium (Se) bioavailability is crucial for Se biofortification in Se-deficient areas and risk assessment in selenosis areas. However, a universally accepted approach to evaluate Se bioavailability in soil is currently lacking. This research investigated Se bioavailability in six soils treated with selenite (Se(IV)) or selenate (Se(VI)) by comparing diffusive gradients in thin-films (DGT) technique and chemical extraction methods through pot experiments. A bioindicator method was used to evaluate Se concentrations in pak choi and compare the results with the Se concentration measured by other methods. Results showed that chemical extraction methods presented different extraction efficiencies for available Se over a range of soil types, and the same extraction method had various extraction efficiencies for different Se species in the same soil. DGT measured Se concentrations (CDGT−Se) for Se(VI) treatment were 2.3–34.1 times of those for Se(IV) treatment. KH2PO4–K2HPO4 and AB-DTPA extractable Se could predict the bioavailability of soil Se, but they were disturbed by soil properties. HAc extraction was unsuitable for evaluating Se bioavailability in different Se(IV)-treated soils. By contrast, DGT technique was preferable for predicting plant uptake of Se(IV) over chemical extraction methods. Although DGT technique was independent of soil properties, KH2PO4–K2HPO4 extraction provided the best fitting regression equation for Se(VI) when it was dependent on soil organic matter. Thus, KH2PO4–K2HPO4 extraction may be preferred to assess Se(VI) bioavailability in different soil types on a large scale.
Mostrar más [+] Menos [-]Identifying key drivers for geospatial variation of grain micronutrient concentrations in major maize production regions of China
2020
Zhao, Qing-Yue | Xu, Shi-Jie | Zhang, Wu-Shuai | Zhang, Zhe | Yao, Zhi | Chen, Xin-Ping | Zou, Chun-Qin
Micronutrient deficiencies are prevalent health problems worldwide. The maintenance of adequate concentrations of micronutrients in maize grain is crucial for human health. We investigated the overall status and geospatial variation of micronutrients in Chinese maize grains and identified their key drivers. A field survey was conducted in four major maize production areas of China in 2017 with 980 pairs of soil and grain samples collected from famers’ fields. At a national scale, grain zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu) concentrations varied substantially, with average values of 17.4, 17.3, 4.9, and 1.5 mg kg⁻¹, respectively, suggesting a solid gap between grain Zn and Fe concentrations and the biofortification target values. Significant regional difference in the concentrations of Zn, Mn and Cu, but not Fe, were observed in grain, with much higher levels in Southwest China. The nutritional yields of Zn, Fe and Cu were lower than the energy and Mn yields, indicating an unbalanced output between energy and micronutrients in current maize production system. Grain Zn, Fe, Mn and Cu correlated negatively with maize yield in most test regions. Increased nitrogen (N) rate positively affected grain Zn and Cu, while increased phosphorus (P) rate negatively affects grain Zn and Fe. Apart from Fe, available Zn, Mn and Cu in soil exerted significant positive effects on grain Zn, Mn and Cu concentrations, respectively. Decrease in soil pH and increase in the organic matter content may increase the accumulation of Fe and Mn in grain. Grain Zn and Cu concentrations increased as available soil P decreased. Of the factors considered in this study, grain yield, N and P rates, soil pH and organic matter were the main factors that affect grain micronutrient status and should be more extensively considered in the production and nutritional quality of maize grain.
Mostrar más [+] Menos [-]Changes in nutrient transport from the Yangtze River to the East China Sea linked to the Three-Gorges Dam and water transfer project
2020
Wang, Hua | Yan, Huaiyu | Zhou, Fengnian | Li, Bao | Zhuang, Wei | Shen, Yuhan
River-sea transition plays a key role in global geochemical cycles. The Yangtze River Estuary of China was selected as the research area, and the Section-Segmented Method was applied to determine the nutrient discharge from the Yangtze River to the East China Sea. A 3-D numerical model for the estuary was established and validated against the field investigated data. By numerical experiments the dynamics of hydrology and nutrient from 1950 to 2016 were simulated under four varied schemes. The individual and combined impacts on the nutrient flux induced by the Three-Gorges Dam (TGD) and the South-to-North Water Transfer Project (SNWTP) were explored. The following results were observed: (1) During the Pre-TGD period, the Yangtze River delivered the loads of 1.32 Tg/yr and 0.08 Tg/yr for TN and TP, respectively. July and Feb. were characterized by the highest and lowest monthly flux, respectively. (2) TGD played a significant role in regulating the temporal nutrient deliveries. After the closing of TGD, the discharges of TN and TP in the dry season respectively went up to 0.55 Tg and 0.032 Tg, with a mean increase of 28.3%. (3) SNWTP reduced the nutrient transport at a relatively stable level, and the total loads of 40.66 Gg and 2.4 Gg were reduced per year for TN and TP, respectively. (4) The combined impacts of TGD and SNWTP varied with seasons. October was characterized by the greatest cumulative effects. In dry seasons, the reduction caused by SNWTP was leveled by TGD-induced increase, limiting the flux variation linked to project operations.
Mostrar más [+] Menos [-]Effects of L-Glufosinate-ammonium and temperature on reproduction controlled by neuroendocrine system in lizard (Eremias argus)
2020
Zhang, Luyao | Chen, Li | Meng, Zhiyuan | Jia, Ming | Li, Ruisheng | Yan, Sen | Tian, Sinuo | Zhou, Zhiqiang | Diao, Jinling
In the context of global warming, an important issue is that many pesticides become more toxic, putting non-target organisms at higher risk of pesticide exposure. Eremias argus (a native Chinese lizard) was selected as animal model in this study. As a kind of poikilothermic vertebrate, E.argus is sensitive to temperature change. The experimental design [(with or without L-Glufosinate-ammonium (L-GLA) pollution × two temperatures (25 and 30 °C)] was used in this study for 90 days to identify the chronic effects of the pesticide–temperature interaction on the lizards’ neuroendocrine-regulated reproduction. Survival rate, body weight, clutch characteristics, testicular histopathology, the content of neurotransmitters and related enzyme activity, the level of sex steroid, the expression of Heat shock protein 70 (HSP70), antioxidant system, the accumulation and degradation of L-GLA were examined. Results showed that L-GLA disrupt reproduction of lizards through hypothalamus-pituitary-gonad (HPG) axis. In addition, temperature can not only change the environmental behavior of pesticides, but also alter the physiological characteristics of lizards. Thus, our results emphasized that temperature is an essential abiotic factor that should not be overlooked in ecotoxicological studies.
Mostrar más [+] Menos [-]Spatio-temporal evolution of ozone pollution and its influencing factors in the Beijing-Tianjin-Hebei Urban Agglomeration
2020
Wang, Zhen-bo | Li, Jia-xin | Liang, Long-wu
Ozone has become a major atmospheric pollutant in China as the pattern of urban energy usage has changed and the number of motor vehicles has grown rapidly. The Beijing-Tianjin-Hebei Urban Agglomeration, also known as the Jing-Jin-Ji Urban Agglomeration (hereafter, JJJUA), with a precarious balance between protecting the ecological environment and sustaining economic development, is challenged by high levels of ozone pollution. Based on ozone observation data from 13 cities in the JJJUA from 2014 to 2017, the spatio-temporal trends in the evolution of ozone pollution and its associated influencing factors were analyzed using Moran’s I Index, hot-spot analysis, and Geodetector using ArcGIS and SPSS software. Five key results were obtained. 1) There was an increase in the annual average ozone concentration, for the period 2014–2017. Comparing the 13 prefecture-level cities, ozone pollution in Chengde and Hengshui decreased, while it worsened in the remaining 11 cities. 2) Ozone pollution was worse in spring and summer than in autumn and winter; the peak ozone pollution season was from May to September; the average ozone concentration on workdays was higher than that on non-workdays, showing a counter-weekend effect. 3) Annual average concentrations were high in the central and southern parts of the study region but low in the north. 4) Prominent positive spatial correlations were observed in ozone concentration, with the best correlations shown in summer and autumn; concentrations were high in Baoding and Xingtai but low in Beijing and Chengde. 5) Concentrations of PM10, NO2, CO, SO2, and PM2.5, as well as average wind speed, sunshine duration, evaporation, precipitation, and temperature, all had significant effects on ozone pollution, and interactions between these influencing factors increased it.
Mostrar más [+] Menos [-]Novel and legacy per- and polyfluoroalkyl substances (PFASs) in a farmland environment: Soil distribution and biomonitoring with plant leaves and locusts
2020
Lan, Zhonghui | Yao, Yiming | Xu, JiaYao | Chen, Hao | Ren, Chao | Fang, Xiangguang | Zhang, Kai | Jin, Litao | Hua, Xia | Alder, Alfredo C. | Wu, Fengchang | Sun, Hongwen
The occurrence of legacy and novel per- and polyfluoroalkyl substances (PFASs) in multiple matrices from a farmland environment was investigated in the Beijing-Tianjin-Hebei core area of northern China. PFASs were ubiquitously detected in farmland soils, and the detection frequency of 6:2 chlorinated polyfluoroalkyl ether sulfonic acid (6:2 Cl-PFESA) was higher than that of perfluorooctane sulfonic acid (98% vs. 83%). Long-chain PFASs, including 6:2 Cl-PFESA, showed a centered distribution pattern around the metropolis of Tianjin, probably due to the local intensive industrial activity, while trifluoroacetic acid (TFA) showed a decreasing trend from the coast to the inland area. Other than soil, TFA was also found at higher levels than other longer-chain PFASs in dust, maize (Zea mays), poplar (Populus alba) leaf and locust (Locusta migratoria manilens) samples. Both poplar leaves and locusts can be used as promising biomonitoring targets for PFASs in farmland environments, and their accumulation potential corresponds with protein and lipid contents. Apart from being exposed to PFASs via food intake, locusts were likely exposed via uptake from soil and precipitated dust in farmland environments. The biomonitoring of locusts may be more relevant to insectivores, which is important to conducting a comprehensive ecological risk assessment of farmland environments.
Mostrar más [+] Menos [-]Predictors of carbapenemase-producing bacteria occurrence in polluted coastal waters
2020
Paschoal, Raphael P. | Campana, Eloiza H. | de S. Castro, Laura | Picão, Renata C.
The spread of carbapenemase-producing bacteria is a worldwide concern as it challenges healthcare, especially considering the insufficient development of antimicrobials. These microorganisms have been described not only in hospitals, but also in several environmental settings including recreational waters. Community exposure to antimicrobial-resistant bacteria through recreation might be relevant for human health, but risk assessment studies are lacking. Absence of effective and feasible monitoring in recreational aquatic matrices contributes to such a knowledge gap. Here, we aimed at assessing predictors of occurrence of medically relevant carbapenemase-producing bacteria in coastal waters. We quantitatively assessed recovery of carbapenemase-producing Enterobacteriaceae, Pseudomonas spp., Acinetobacter spp. and Aeromonas spp. in superficial coastal waters showing distinct pollution history across one year, and registered data regarding tide regimen, 7-days pluviosity, salinity, pH, water temperature. We analyzed data using General Estimating Equation (GEE) to assess predictors of such occurrence. Our results suggest that the sampling site had the strongest effect over concentration of these antimicrobial-resistant microorganisms, followed by pollution indexes and tide regimen. Increased salinity, advanced sampling time, water temperature, rainfall and decrease of pH were related to decrease concentrations. We provide a list of factors that could be easily monitored and further included in models aiming at predicting occurrence of carbapenemase producers in coastal waters. Our study may encourage researchers to further improve this list and validate the model proposed, so that monitoring and future public policies can be developed to control the spread of antimicrobial resistance in the environment.
Mostrar más [+] Menos [-]Sorption and release process of polybrominated diphenyl ethers (PBDEs) from different composition microplastics in aqueous medium: Solubility parameter approach
2020
Singla, M. | Díaz, J. | Broto-Puig, F. | Borrós, S.
Microplastics represent a growing environmental concern in the aquatic environment due to its size resemblance to microplankton in addition to its ability to act as concentrators of persistent organic pollutants (POPs). Among them, polybrominated diphenyl ethers (PBDEs) stand out as POPs with dangerous levels in the aquatic environment. In this paper we have developed a methodology for studying the sorption and extraction process of twelve congeners of PBDE from four microplastics: polyethylene terephthalate (PET), polypropylene (PP), low density polyethylene (LDPE) and polystyrene (PS). We have proved that there is a dependence between the polymer composition and the solvent used for the extraction of the analytes. The extraction is function of the ability of the solvent to partially or totally dissolve the plastic that will allow the analyte to have a greater capacity to be released from the polymer structure. The solution of the polymer is achieved by making the free energy (ΔG, or Gibbs potential) of the system negative making the process occurs spontaneously, this will depend on the solubility parameter (∂), specific of both, solvent and polymer. Therefore, this study helps to determine which methodology to be applied for the extraction of pollutants before the start of the analysis. This approach has been applied to microplastic samples collected in different locations in the four oceans and collected from the Barcelona World Race (BWR) 2014–2015 sailing race.
Mostrar más [+] Menos [-]