Refinar búsqueda
Resultados 881-890 de 7,995
Microscale extraction versus conventional approaches for handling gastrointestinal extracts in oral bioaccessibility assays of endocrine disrupting compounds from microplastic contaminated beach sand Texto completo
2021
Trujillo-Rodríguez, María J. | Gomila, Rosa M. | Martorell, Gabriel | Miró, Manuel
The unified bioaccessibility method (UBM) was harnessed to assess in vitro oral bioaccessibility pools of dialkyl phthalate congeners (with methyl, –ethyl, –butylbenzyl, –n-butyl, –2-ethylhexyl, and –n-octyl moieties) and bisphenol A at the 17 μg g⁻¹ level in beach sand contaminated with polyethylene microplastics. A variety of sample preparation approaches prior to the analysis of the UBM gastrointestinal extracts, including traditional methods (protein precipitation, liquid-liquid extraction, and solid-phase extraction) and dispersive liquid-liquid microextraction (DLLME) were comprehensively evaluated for clean-up and analyte enrichment. DLLME was chosen among all tested approaches on account of the high extraction efficiency (73–95%, excluding bis(2-ethylhexyl)phthalate and di-n-octyl phthalate), high sample throughput (∼7 min per set of samples), and environmental friendliness as demonstrated by the analytical eco-scale score of 83, and the green analytical procedure index pictogram with green/yellow labeling. The release of the less hydrophobic plastic-laden compounds (dimethyl phthalate, diethyl phthalate and bisphenol A) from the contaminated sample into the body fluids was significant, with bioaccessibility values ranging from 30 to 70%, and from 43 to 74% in gastric and gastrointestinal fluids, respectively, and with relative standard deviation < 17% in all cases. The majority of the compounds were leached during gastric digestion, likely as the combined action of the low pH and the gastric enzymes. The risk exposure analysis revealed that accumulation/concentration in the body fluids is potentially relevant for dimethyl phthalate, diethyl phthalate and bisphenol A, with relative accumulation ratios ranging from 1.1 ± 0.1 to 2.6 ± 0.4. The average daily intake values for the suite of compounds, corrected with the bioaccessibility fraction, ranged from 60 to 430 ng kg of body weight⁻¹·day⁻¹, in all cases, far below the tolerable daily intakes, thus indicating the lack of children health risk by ingestion of microplastic-laden sand with elevated concentrations of plasticizers.
Mostrar más [+] Menos [-]Trace metal pollution risk assessment in urban mangrove patches: Potential linkage with the spectral characteristics of chromophoric dissolved organic matter Texto completo
2021
Hong, Hualong | Wu, Shengjie | Wang, Qiang | Qian, Lu | Lu, Haoliang | Liu, Jingchun | Lin, Hsing-Juh | Zhang, Jie | Xu, Wei-Bin | Yan, Chongling
Mangroves are inter-tidal ecosystems with important global ecological roles. Today, mangroves around the world are at risk of fragmentation, especially in areas with rapid urbanization. Mangroves experiencing habitat fragmentation may be more intensely affected by human activities and a scenario that might have been ignored by previous studies on trace metal (TM) environmental geochemistry. Here, we investigated the typically fragmented habitats in a subtropical mangrove estuary (the Danshuei Basin in Taiwan Strait) to evaluate how human activities affect the geochemical behaviors of TMs. Ni, Sb, Zn, Cr, Cu, and Cd were the primary contaminants found in the mangrove patches. Metal sequestration from the riverine (Ni, Cr) and in-patch activity (Sb, Zn, Cu, Cd) are primary sources of TM’s risk. Using the synthesized pollution risk assessment, we showed that most of the mangrove patches are under moderate pollution risk. A significant relationship between the TMs pollution indicators and the absorption coefficient at 254 nm (a254), implying that the a254 could be a potential convenient parameter in the TMs risk assessment, which might be partly explained by the bio-remediation of sulfate-reduction microorganism. This study demonstrates the ecological risks posed by TM pollution on urban mangrove patches and emphasizes the importance of a more comprehensive survey for estuarine mangrove patch environments to achieve Sustainable Development Goals.
Mostrar más [+] Menos [-]Emission factors of ammonia for on-road vehicles in urban areas from a tunnel study in south China with laser-absorption based measurements Texto completo
2021
Li, Sheng | Liu, Tengyu | Song, Wei | Pei, Chenglei | Huang, Zuzhao | Wang, Yujun | Chen, Yanning | Yan, Jianhong | Zhang, Runqi | Zhang, Yanli | Wang, Xinming
Vehicle emission is an important source of ammonia (NH₃) in urban areas. To better address the role of vehicle emission in urban NH₃ sources, the emission factor of NH₃ (NH₃-EF) from vehicles running on roads under real-world conditions (on-road vehicles) needs to update accordingly with the increasingly tightened vehicle emission standards. In this study, laser-absorption based measurements of NH₃ were conducted during a six-day campaign in 2019 at a busy urban tunnel with a daily traffic flow of nearly 40,000 vehicles in south China’s Pearl River Delta (PRD) region. The NH₃-EF was measured to be 16.6 ± 6.3 mg km⁻¹ for the on-road vehicle fleets and 19.0 ± 7.2 mg km⁻¹ for non-electric vehicles, with an NH₃ to CO₂ ratio of 0.27 ± 0.09 ppbv ppmv⁻¹. Multiple linear regression revealed that the average NH₃-EFs for gasoline vehicles (GVs), liquefied petroleum gas vehicles, and heavy-duty diesel vehicles (HDVs) were 18.8, 15.6, and 44.2 mg km⁻¹, respectively. While NH₃ emissions from GVs were greatly reduced with enhanced performance of engines and catalytic devices to meet stricter emission standards, the application of urea selective catalytic reduction (SCR) in HDVs makes their NH₃ emission an emerging concern. Based on results from this study, HDVs may contribute over 11% of the vehicular NH₃ emissions, although they only share ∼4% by vehicle numbers in China. With the updated NH₃-EFs, NH₃ emission from on-road vehicles was estimated to be 9 Gg yr⁻¹ in the PRD region in 2019, contributing only 5% of total NH₃ emissions in the region, but still might be a dominant NH₃ source in the urban centers with little agricultural activity.
Mostrar más [+] Menos [-]How far climatic parameters associated with air quality induced risk state (AQiRS) during COVID-19 persuaded lockdown in India Texto completo
2021
Mahato, Susanta | Talukdar, Swapan | Pal, Swades | Debanshi, Sandipta
Global temperature rises in response to accumulating greenhouse gases is a well-debated issue in the present time. Historical records show that greenhouse gases positively influence temperature. Lockdown incident has brought an opportunity to justify the relation between greenhouse gas centric air pollutants and climatic variables considering a concise period. The present work has intended to explore the trend of air quality parameters, and air quality induced risk state since pre to during the lockdown period in reference to India and justifies the influence of pollutant parameters on climatic variables. Results showed that after implementation of lockdown, about 70% area experienced air quality improvement during the lockdown. The hazardous area was reduced from 7.52% to 5.17%. The spatial association between air quality components and climatic variables were not found very strong in all the cases. Still, statistically, a significant relation was observed in the case of surface pressure and moisture. From this, it can be stated that pollutant components can control the climatic components. This study recommends that pollution source management could be a partially good step for bringing climatic resilience of a region.
Mostrar más [+] Menos [-]Distance dilution of antibiotic resistance genes of sediments in an estuary system in relation to coastal cities Texto completo
2021
Lu, Xiao-Ming | Peng, Xin | Xue, Feng | Qin, Song | Ye, Shen | Dai, Li-Bo
Coastal tourist and industrial cities are most likely to have differential effects on the distance dilution of antibiotic resistance genes (ARGs) in an estuary system. This study used high-throughput fluorescence quantitative polymerase chain reaction to identify sediment ARGs in two typical estuaries of coastal tourist and industrial cities (Xiamen and Taizhou) in China. The distance dilution of ARGs and its relationship with key environmental factors were analysed. The results indicated that along the river inlet towards the sea, the distance dilution effect on ARG abundance in estuary sediments of Taizhou was approximately double that in Xiamen, and the macrolide, lincosamide, and streptogramin B (MLSB) and vancomycin genes were replaced by the fluoroquinolone, quinolone, florfenicol, chloramphenicol, and amphenicol (FCA) and β-lactam genes in Taizhou, whereas β-lactam genes succeeded the MLSB and sul genes in Xiamen. The abundance and number of ARGs and mobile genetic elements (MGEs) were positively correlated with the particle size and total organic carbon (TOC) contents of sediments, whereas they were negatively associated with the oxidation and reduction potential (Eₕ) and pH of sediments, as well as the seawater salinity. The sediment particle size (SPZ) was the dominant physicochemical factor affecting the abundance of ARGs (r = 0.826, p < 0.05) and MGEs (r = 0.850, p < 0.01). These findings suggest that although the distance dilution effect on the ARG abundance of estuary sediments of the industrial city is greater than that of the tourist city, the larger SPZ, higher TOC content, and lower salinity, pH, and Eₕ in estuary regions adjacent to the industrial city can more significantly facilitate the proliferation and propagation of ARGs in the sediments.
Mostrar más [+] Menos [-]Ecological risk and early warning of soil compound pollutants (HMs, PAHs, PCBs and OCPs) in an industrial city, Changchun, China Texto completo
2021
Peng, Jingyao | Chen, Yanan | Xia, Qing | Rong, Guangzhi | Zhang, Jiquan
Soil ecological risk caused by compound pollutants is a topic that deserves increasing attention, and soil risk early warning is a more in-depth discussion on this topic. In this study, we collected soil samples from Changchun, a typical industrial city, and determined the contents of 13 heavy metals (HMs) (0.00 mg kg⁻¹-6380 mg kg⁻¹), 16 polycyclic aromatic hydrocarbons (PAHs) (0.00 mg kg⁻¹-27.7 mg kg⁻¹), 7 polychlorinated biphenyls (PCBs) (0.30 μg kg⁻¹-168 μg kg⁻¹), and 8 organochlorine pesticides (OCPs) (0.00 mg kg⁻¹-4.52 mg kg⁻¹). The soil ecological risks of compound pollutants were assessed. The results showed that PAHs were the greatest risk pollutants, followed by PCBs and HMs, and OCPs were the smallest risk pollutants. Most of the ecological risks of compound pollutants were classified as “moderate severity” level according to the (contamination severity index) CSI evaluation criteria. With the help of modern industrial economic theory, through the analysis of the annual accumulation of pollutants, it is possible to predict the future pollutant content in Changchun, and the soil risks could be forewarned. The results showed that if active measures were not taken to reduce the accumulation of PAHs in Changchun soil, the CSI-PAHs would be classified as “ultra-high severity” level in 2035.
Mostrar más [+] Menos [-]Integration of α, β and γ components of macroinvertebrate taxonomic and functional diversity to measure of impacts of commercial sand dredging Texto completo
2021
Meng, Xingliang | Cooper, Keith M. | Liu, Zhenyuan | Li, Zhengfei | Chen, Juanjuan | Jiang, Xuankong | Ge, Yihao | Xie, Zhicai
Effects of commercial sand mining on aquatic diversity are of increasing global concern, especially in parts of some developing countries. However, understanding of this activity on the diversity of macroinvertebrates remains focused on the α component of species diversity, rather than community functioning. Thus, there remains much uncertainty regarding how each component of taxonomic (TD) and functional (FD) diversity respond to the activity both in freshwater and marine environments. Here, we assessed the effect of sand dredging on α, β and γ components of TD and FD during different dredging periods based on the response of macroinvertebrate communities over 4 years in the second largest freshwater lake in China. After three years of active dredging, substantial reductions in each component (α, β and γ) of TD and FD were observed within the dredged area. Moreover, after one year of natural recovery, a distinct restoration was observed with an obvious return in multiple facets of TD and FD indices. No such changes were observed within the adjacent and reference areas. Decreases in the multiple components of TD and FD within the dredged area were most likely associated with the direct extraction of substrate and associated benthic fauna and indirect variations of the water and sediment environment (e.g., increases in water depth and decreases in %Clay). Furthermore, dispersal processes and mass effects mainly contributed to the maintenance of TD and FD during the dredged and recovery stages. In addition, the fast recovery of TD and FD was also related to the simple taxonomic structure and highly connected nature of the study area. Our results suggest that a more precise experimental design (BACI) should be pursued to avoid potentially confounding effects (e.g., natural disturbance) because the sensitivity of diversity indices depends upon different experimental designs. Moreover, measurement of the impacts of sand dredging on macroinvertebrate diversity can be undertaken within a rigorous framework for better understanding the patterns and processes of each component of TD and FD under the sand dredging disturbance.
Mostrar más [+] Menos [-]Distribution of microplastics in soil and freshwater environments: Global analysis and framework for transport modeling Texto completo
2021
Koutnik, Vera S. | Leonard, Jamie | Alkidim, Sarah | DePrima, Francesca J. | Ravi, Sujith | Hoek, Eric M.V. | Mohanty, Sanjay K.
Microplastics are continuously released into the terrestrial environment from sources where they are used and produced. These microplastics accumulate in soils, sediments, and freshwater bodies, and some are conveyed via wind and water to the oceans. The concentration gradient between terrestrial inland and coastal regions, the factors that influence the concentration, and the fundamental transport processes that could dynamically affect the distribution of microplastics are unclear. We analyzed microplastic concentration reported in 196 studies from 49 countries or territories from all continents and found that microplastic concentrations in soils or sediments and surface water could vary by up to eight orders of magnitude. Mean microplastic concentrations in inland locations such as glacier (191 n L⁻¹) and urban stormwater (55 n L⁻¹) were up to two orders of magnitude greater than the concentrations in rivers (0.63 n L⁻¹) that convey microplastics from inland locations to water bodies in terrestrial boundary such as estuaries (0.15 n L⁻¹). However, only 20% of studies reported microplastics below 20 μm, indicating the concentration in these systems can change with the improvement of microplastic detection technology. Analysis of data from laboratory studies reveals that biodegradation can also reduce the concentration and size of deposited microplastics in the terrestrial environment. Fiber percentage was higher in the sediments in the coastal areas than the sediments in inland water bodies, indicating fibers are preferentially transported to the terrestrial boundary. Finally, we provide theoretical frameworks to predict microplastics transport and identify potential hotspots where microplastics may accumulate.
Mostrar más [+] Menos [-]Artificial illumination influences niche segregation in bats Texto completo
2021
Salinas-Ramos, Valeria B | Ancillotto, Leonardo | Cistrone, Luca | Nastasi, Chiara | Bosso, Luciano | Smeraldo, Sonia | Sánchez-Cordero, Víctor | Russo, Danilo
Artificial light at night (ALAN) is a pervasive form of pollution largely affecting wildlife, from individual behaviour to community structure and dynamics. As nocturnal mammals, bats are often adversely affected by ALAN, yet some “light-opportunistic” species exploit it by hunting insects swarming near lights. Here we used two potentially competing pipistrelle species as models, Kuhl’s (Pipistrellus kuhlii) and common (Pipistrellus pipistrellus) pipistrelles, both known to forage in artificially illuminated areas. We set our study in a mountainous area of central Italy, where only recently did the two species become syntopic. We applied spatial modelling and radiotracking to contrast potential vs. actual environmental preferences by the two pipistrelles. Species distribution models and niche analysis showed a large interspecific niche overlap, including a preference for illuminated areas, presenting a potential competition scenario. Pipistrellus pipistrellus association with ALAN, however, was weakened by adding P. kuhlii as a biotic variable to the model. Radiotracking showed that the two species segregated habitats at a small spatial scale and that P. kuhlii used artificially illuminated sites much more frequently than P. pipistrellus, despite both species potentially being streetlamp foragers. We demonstrate that ALAN influences niche segregation between two potentially competing species, confirming its pervasive effects on species and community dynamics, and provide an example of how light pollution and species’ habitat preferences may weave a tapestry of complex ecological interactions.
Mostrar más [+] Menos [-]Air pollution and DNA methylation in adults: A systematic review and meta-analysis of observational studies Texto completo
2021
Wu, Yuying | Qie, Ranran | Cheng, Min | Zeng, Yunhong | Huang, Shengbing | Guo, Chunmei | Zhou, Qionggui | Li, Quanman | Tian, Gang | Han, Minghui | Zhang, Yanyan | Wu, Xiaoyan | Li, Yang | Zhao, Yang | Yang, Xingjin | Feng, Yifei | Liu, Dechen | Qin, Pei | Hu, Dongsheng | Hu, Fulan | Xu, Lidan | Zhang, Ming
This systematic review and meta-analysis aimed to investigate the association between air pollution and DNA methylation in adults from published observational studies. PubMed, Web of Science and Embase databases were systematically searched for available studies on the association between air pollution and DNA methylation published up to March 9, 2021. Three DNA methylation approaches were considered: global methylation, candidate-gene, and epigenome-wide association studies (EWAS). Meta-analysis was used to summarize the combined estimates for the association between air pollutants and global DNA methylation levels. Heterogeneity was assessed with the Cochran Q test and quantified with the I² statistic. In total, 38 articles were included in this study: 16 using global methylation, 18 using candidate genes, and 11 using EWAS, with 7 studies using more than one approach. Meta-analysis revealed an imprecise but inverse association between exposure to PM₂.₅ and global DNA methylation (for each 10-μg/m³ PM₂.₅, combined estimate: 0.39; 95% confidence interval: 0.97 - 0.19). The candidate-gene results were consistent for the ERCC3 and SOX2 genes, suggesting hypermethylation in ERCC3 associated with benzene and that in SOX2 associated with PM₂.₅ exposure. EWAS identified 201 CpG sites and 148 differentially methylated regions that showed differential methylation associated with air pollution. Among the 307 genes investigated in 11 EWAS, a locus in nucleoredoxin gene was found to be positively associated with PM₂.₅ in two studies. Current meta-analysis indicates that PM₂.₅ is imprecisely and inversely associated with DNA methylation. The candidate-gene results consistently suggest hypermethylation in ERCC3 associated with benzene exposure and that in SOX2 associated with PM₂.₅ exposure. The Kyoto Encyclopedia of Genes and Genomes (KEGG) network analyses revealed that these genes were associated with African trypanosomiasis, Malaria, Antifolate resistance, Graft-versus-host disease, and so on. More evidence is needed to clarify the association between air pollution and DNA methylation.
Mostrar más [+] Menos [-]