Refinar búsqueda
Resultados 891-900 de 6,473
The association between short-term exposure to ambient air pollution and fractional exhaled nitric oxide level: A systematic review and meta-analysis of panel studies
2020
Chen, Xiaolu | Liu, Feifei | Niu, Zhiping | Mao, Shuyuan | Tang, Hong | Li, Na | Chen, Gongbo | Liu, Suyang | Lu, Yuanan | Xiang, Hao
Several epidemiological studies have evaluated the fractional exhaled nitric oxide (FeNO) of ambient air pollution but the results were controversial. We therefore conducted a systematic review and meta-analysis to investigate the associations between short-term exposure to air pollutants and FeNO level. We searched PubMed and Web of Science and included a total of 27 articles which focused on associations between ambient air pollutants (PM₁₀, PM₂.₅, black carbon (BC), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), ozone (O₃)) exposure and the change of FeNO. Random effect model was used to calculate the percent change of FeNO in association with a 10 or 1 μg/m³ increase in air pollutants exposure concentrations. A 10 μg/m³ increase in short-term PM₁₀, PM₂.₅, NO₂, and SO₂ exposure was associated with a 3.20% (95% confidence interval (95%CI): 1.11%, 5.29%), 2.25% (95%CI: 1.51%, 2.99%),4.90% (95%CI: 1.98%, 7.81%), and 8.28% (95%CI: 3.61%, 12.59%) change in FeNO, respectively. A 1 μg/m³ increase in short-term exposure to BC was associated with 3.42% (95%CI: 1.34%, 5.50%) change in FeNO. The association between short-term exposure to O₃ and FeNO level was insignificant (P>0.05). Future studies are warranted to investigate the effect of multiple pollutants, different sources and composition of air pollutants on airway inflammation.
Mostrar más [+] Menos [-]Change in phytoextraction of Cd by rapeseed (Brassica napus L.) with application rate of organic acids and the impact of Cd migration from bulk soil to the rhizosphere
2020
Qiao, Dongmei | Lu, Hongfei | Zhang, Xiaoxian
Adding exogenous low-molecular weight organic acids is an effective technique to improve phytoremediation of Cd-contaminated soil and has been well documented, but how acid application rate affects remediation efficiency and its underlying limiting factors remains elusive. We investigated this using pot experiments with rapeseed (Brassica napus L.) as the model plant. Plastic pots packed with a sandy loam contaminated by Cd at 4.838 mg/kg were amended with acetic acid, oxalic acid, citric acid, malic acid and tartaric acid, respectively, at an application rate gradient varying from 0.0 to 12.0 mmol/kg. Plants in each pot were harvested after growing for five months, and we then measured the exchangeable, carbonate, Fe–Mn oxide, organic and residual Cd in the rhizosphere, as well as Cd in both roots and shoots. The results showed that all organic acids improved plant uptake of Cd and, compared with the control without acid addition, they could improve Cd uptake by more than 100%. The enhanced Cd extraction was due to the increase in exchangeable Cd in the rhizosphere. Plant Cd was weakly correlated to the amount of Cd lost from a unit volume of the rhizosphere due to root extraction (R² = 0.06), but a good negative correlation was found between them after normalizing the lost Cd by root biomass (R² = 0.36). Mass balance analysis revealed that the average Cd content in soil (rhizosphere and bulk soils combined) was much higher than the Cd content in the rhizosphere, and the improved Cd mobility after acid addition was thus due to the increased chelation. As diffusion of ligands in water is one order in magnitude smaller than diffusion of Cd ions, our results suggested that Cd migration from the bulk soil into the rhizosphere was a major factor limiting Cd phytoextraction by rapeseed after adding the exogenous organic acids.
Mostrar más [+] Menos [-]Use of natural and artificial radionuclides to determine the sedimentation rates in two North Caucasus lakes
2020
Kuzmenkova, Natalia V. | Ivanov, Maxim M. | Alexandrin, Mikhail Y. | Grachev, Alexei M. | Rozhkova, Alexandra K. | Zhizhin, Kirill D. | Grabenko, Evgeniy A. | Golosov, Valentin N.
The specific activities of natural (²¹⁰Pb, ²²⁶Ra, and ²³²Th) and artificial (¹³⁷Cs, ²³⁹,²⁴⁰Pu, and ²⁴¹Am) radionuclides in the sediments of two North Caucasus lakes were determined. The two lakes, Lake Khuko and Lake Donguz-Orun, differ in their sedimentation conditions. Based on the use of unsupported ²¹⁰Pbₑₓ and both Chernobyl-derived and bomb-derived ¹³⁷Cs as chronological markers, it was established that the sedimentation rates in Lake Khuko over the past 55–60 y did not exceed 0.017 cm y⁻¹. Sedimentation rates in Lake Donguz-Orun were found to be more than an order of magnitude higher. In the latter case, the sedimentation rates for the period from 1986 to the present were over 1.5 times higher than they were for the period 1963–1986. The differences in sedimentation rates were due to differences in the rates of denudation of their respective catchment areas. The specific activities of artificial radionuclides (¹³⁷Cs, 2600 Bq kg⁻¹; ²³⁹,²⁴⁰Pu, 162 Bq kg⁻¹; and ²⁴¹Am, 36 Bq kg⁻¹) and their ratios in the sediments of Lake Khuko show that their deposition was mainly due to global stratospheric fallout of technogenic radionuclides associated with nuclear bomb testing during 1954–1963—rather than fallout from the Chernobyl accident. Several factors, including the mode of precipitation, features of the surface runoff, and location of Lake Khuko, were responsible for the accumulation of artificial radionuclides.
Mostrar más [+] Menos [-]Can skyglow reduce nocturnal melatonin concentrations in Eurasian perch?
2020
Kupprat, Franziska | Hölker, Franz | Kloas, Werner
Artificial light at night (ALAN) changes the natural rhythm of light and darkness and can impair the biorhythms of animals, for example the nocturnal melatonin production of vertebrates, which serves as a proxy for daily physiological rhythms. Freshwater fish are exposed to ALAN in large urban and suburban areas in the form of direct light or in the form of skyglow, a diffuse brightening of the night sky through the scattered light reflected by clouds, atmospheric molecules, and particles in the air. However, investigations on the sensitivity of melatonin production of fish towards low intensities of ALAN in the range of typical skyglow are rare. Therefore, we exposed Eurasian perch (Perca fluviatilis) to nocturnal illumination levels of 0.01 lx, 0.1 lx and 1 lx and a control group with dark nights and daylight intensities of 2900 lx in all groups. After ten days of exposure to the experimental conditions, tank water was non-invasively sampled every 3 h over a 24 h period and melatonin was measured by ELISA. Melatonin was gradually reduced in all treatments with increasing intensity of ALAN whereas rhythmicity was maintained in all treatment groups although at 1 lx not all evaluated parameters confirmed rhythmicity. These results show a high sensitivity of Eurasian perch towards ALAN indicating that low light intensities of 0.01 lx and 0.1 lx as they occur in urban and suburban areas in the form of skyglow can affect the physiology of Eurasian perch. Furthermore, we highlight how this may impact perch in their sensitivity towards lunar rhythms and the role of skyglow for biorhythms of temperate freshwater fish.
Mostrar más [+] Menos [-]Characterization of Equivalent Black Carbon at a regional background site in Central Europe: Variability and source apportionment☆
2020
Mbengue, Saliou | Serfozo, Norbert | Schwarz, Jaroslav | Ziková, Nadezda | Šmejkalová, Adéla Holubová | Holoubek, Ivan
Characterizing Black Carbon (BC) at regional background areas is important for better understanding its impact on climate forcing and health effects. The variability and sources of Equivalent Black Carbon (EBC) in PM₁₀ (atmospheric particles with aerodynamic diameter smaller than 10 μm) have been investigated during a 5-year measurement period at the National Atmospheric Observatory Košetice (NAOK), Czech Republic. Ground based measurements were performed from September 2012 to December 2017 with a 7-wavelength aethalometer (AE31, Magee Scientific). The contributions of fossil fuel (EBCff) and biomass burning (EBCbb) were estimated using the aethalometer model. Seasonal, diurnal and weekly variations of EBC were observed that can be related to the sources fluctuations and transport characteristic of pollutants predominantly associated with regional air masses recirculating over the Czech Republic and neighboring countries. The absorption Ångström exponent (α-value) estimated in summer (1.1 ± 0.2) was consistent with reported value for traffic, while the mean highest value (1.5 ± 0.2) was observed in winter due to increased EBCbb accounting for about 50% of the total EBC. This result is in agreement with the strong correlation between EBCbb and biomass burning tracers (levoglucosan and mannosan) in winter. During this season, the concentrations of EBCbb and Delta-C (proxy for biomass burning) reached a maximum in the evening when increasing emissions of wood burning in domestic heating devices (woodstoves/heating system) is expected, especially during the weekend. The diurnal profile of EBCff displays a typical morning peak during the morning traffic rush hour and shows a decreasing concentration during weekends due to lower the traffic emission.
Mostrar más [+] Menos [-]Availability of specific prey types impact pied flycatcher (Ficedula hypoleuca) nestling health in a moderately lead contaminated environment in northern Sweden
2020
Lidman, Johan | Jonsson, Micael | Berglund, Åsa M.M.
Anthropogenic metal contamination can cause increased stress in exposed organisms, but it can be difficult to disentangle the anthropogenic influence from natural variation in environmental conditions. In the proximity of a closed lead (Pb)/zinc (Zn) mine in northern Sweden, the health effects of Pb exposure, essential element (calcium [Ca] and Zn) uptake, and prey availability and composition were estimated on pied flycatcher (Ficedula hypoleuca) nestlings, using hemoglobin (Hb) level as a proxy for health. Pb concentration in nestling blood range between 0.00034 and 2.21 μg/g (ww) and nestlings close to the mine had higher Pb concentrations and lower Hb, but contrary to our hypothesis, Hb was not directly related to Pb accumulation. Proportions of flying terrestrial and aquatic insects in available prey and availability of flying terrestrial insects were positively associated with nestling Hb, whereas the proportion of terrestrial ground living prey, the most common prey type, showed a negative association. This suggests that positive influence of certain prey, which does not have to be the most common in the surroundings, can counteract the negative effects from Pb contamination on bird health. Nestlings inhabiting sites adjacent to lakes had an advantage in terms of prey composition and availability of preferred prey, which resulted in higher Hb. As such, our results show that during moderate exposure to metals, variation in natural conditions, such as prey availability, can have great impact on organism health compared to Pb exposure.
Mostrar más [+] Menos [-]Sulfide reduction can significantly enhance transport of biochar fine particles in saturated porous medium
2020
Ma, Pengkun | Chen, Wei
The release of fine particles from biochar materials applied in the environment may have important environmental implications, such as mobilization of environmental contaminants. In natural environments biochar fine particles can undergo various transformation processes, which may change their surface chemistry and consequently, the mobility of the particles. Here, we show that sulfide reduction can significantly alter the transport of wheat-straw- and pine-wood-derived biochar fine particles in saturated porous media. Counterintuitively, the sulfide-reduced biochar particles exhibited greater mobility in artificial groundwater than their non-reduced counterparts, even though reduction led to decrease of surface charge negativity and increase of hydrophobicity (from the removal of surface O-functional groups), both should favor particle deposition, as predicted based on extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory. Using transport experiments conducted in single-cation background solutions containing K⁺, Mg²⁺ or Ca²⁺ under different pH conditions, we show that the surprisingly greater mobility of sulfide-reduced biochar particles was attributable to the removal of surface carboxyl groups during reduction, as this markedly alleviated particle deposition through cation bridging, wherein Ca²⁺ acted as the bridging agent in linking the surface O-functional groups of biochar particles and quartz sand. These findings show the critical roles of surface properties in dictating the mobility of biochar fine particles and call for further understanding of their transport properties, which apparently cannot be simply extrapolated based on the findings of other (engineered) carbonaceous nanomaterials.
Mostrar más [+] Menos [-]The impact of COVID-19 as a necessary evil on air pollution in India during the lockdown
2020
Shehzad, Khurram | Sarfraz, Muddassar | Shah, Syed Ghulam Meran
The study objective is to contemplate the effectiveness of COVID-19 on the air pollution of Indian territory from January 2020 to April 2020. We have executed data from European Space Agency (ESA) and CPCB online portal for air quality data dissemination. The Sentinel – 5 P satellite images elucidate that the Air quality of Indian territory has been improved significantly during COVID-19. Mumbai and Delhi are one of the most populated cities. These two cities have observed a substantial decrease in Nitrogen Dioxide (40–50%) compared to the same period last year. It suggests that the emergence of COVID-19 has been proved to a necessary evil as being advantageous for mitigating air pollution on Indian territory during the lock-down. The study found a significant decline in Nitrogen Dioxide in reputed states of India, i.e., Delhi and Mumbai. Moreover, a faded track of Nitrogen Dioxide can be seen at the Maritime route in the Indian Ocean. An upsurge in the environmental quality of India will also be beneficial for its neighbor countries, i.e., China, Pakistan, Iran, and Afghanistan.
Mostrar más [+] Menos [-]The toxicity of graphene oxide affected by algal physiological characteristics: A comparative study in cyanobacterial, green algae, diatom
2020
Yin, Jingyu | Fan, Wenhong | Du, Juan | Feng, Weiying | Dong, Zhaomin | Liu, Yingying | Zhou, Tingting
Though the main toxic mechanisms of graphene oxide (GO) to algae have been accepted as the shading effect, oxidative stress and mechanical damage, the effect of algal characteristics on these three mechanisms of GO toxicity have seldom been taken into consideration. In this study, we investigated GO toxicity to green algae (Chlorella vulgaris, Scenedesmus obliquus, Chlamydomonas reinhardtii), cyanobacteria (Microcystis aeruginosa) and diatoms (Cyclotella sp.). The aim was to assess how the physiological characteristics of algae affect the toxicity of GO. Results showed that 10 mg/L of GO significantly inhibited the growth of all tested algal types, while S. obliquus and C. reinhardtii were found to be the most susceptible and tolerant species, respectively. Then, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the physiological characteristics of the assessed algae. The presence of locomotive organelles, along with smaller and more spherical cells, was more likely to alleviate the shading effect. Variations in cell wall composition led to different extents of mechanical damage as shown by Cyclotella sp. silica frustules and S. obliquus autosporine division being prone to damage. Meanwhile, growth inhibition and cell division were significantly correlated with the oxidative stress and membrane permeability, suggesting the latter two indicators can effectively signal GO toxicity to algae. The findings of this study provide novel insights into the toxicity of graphene materials in aquatic environments.
Mostrar más [+] Menos [-]Mussels facilitate the sinking of microplastics to bottom sediments and their subsequent uptake by detritus-feeders
2020
Piarulli, Stefania | Airoldi, Laura
Microplastics (MP) are omnipresent contaminants in the oceans, however little is known about the MP transfer between marine compartments and species. Three connected laboratory experiments using the filter-feeding mussel Mytilus galloprovincialis and the omnivorous polichaete Hediste diversicolor were conducted to evaluate whether the filtering action by mussels affects the vertical transfer of MP of different sizes (MPSMALL = 41 μm; MPLARGE = 129 μm) and densities (polyamide = 1.15 g cm⁻³; polypropylene = 0.92 g cm⁻³) across compartments and species with different feeding modes. Mussels significantly removed MP from the water column by incorporating them into biodeposits. This effect was particularly evident for the MPSMALL, whose deposition from the water column to the bottom was enhanced (about 15%) by the action of mussels. The incorporation of MP into faecal pellets increased the particles’ sinking velocity by about 3–4 orders of magnitude. Conversely, the MP presence significantly decreased the depositional velocities of faecal pellets, and the magnitude of this effect was greater with increasing MP size and decreasing density. The MP incorporation into mussels’ biodeposits also more than doubled the amount of MP uptake by H. diversicolor. We conclude that detrital pathways could be a transfer route of MP across marine compartments and food webs, potentially affecting the distribution of MP in sediments and creating hot-spots of bioavailable MP.
Mostrar más [+] Menos [-]