Refinar búsqueda
Resultados 901-910 de 1,310
Removal of Zn2+ from Aqueous Solution using Castor Seed Hull Texto completo
2011
Mohammod, Masita | Sen, Tushar Kanti | Maitra, Saikat | Dutta, Binay K.
The effects of various experimental parameters on adsorption of Zn2+ metal ion from its aqueous solution by castor seed hull and also by activated carbon have been investigated using batch adsorption experiments. It has been found that the amount of zinc adsorbed per unit mass of the hull increases with the initial metal ion concentration, contact time, solution pH and with the amount of the adsorbent. Kinetic experiments clearly indicate that adsorption of zinc on both castor hull and activated carbon is a three-step process—a rapid adsorption of the metal ion, a transition phase, and an almost flat plateau. This has also been confirmed by the intraparticle diffusion model. It has also been found that the zinc adsorption process followed pseudo-second order kinetics. The kinetic parameters including rate constants have been determined at different initial metal ion concentration, pH, amount, and type of adsorbent, respectively. The Langmuir and Freundlich adsorption isotherm models have been used to interpret the equilibrium adsorption data. The Langmuir model yields better correlation coefficients. The monolayer adsorption capacities (q m) of castor hull and activated carbon have been compared with those for others reported in the literature. The value of separation factor (R L) derived from the Langmuir model gives an indication of favorable adsorption. Finally, from comparative studies, it has been found that castor hull is a potentially attractive adsorbent as compared to commercial activated carbon for the removal of zinc from aqueus effluents.
Mostrar más [+] Menos [-]Mixing of Acid Rock Drainage with Alkaline Ash Leachates—Fate and Immobilisation of Trace Elements Texto completo
2011
Bäckström, Mattias | Sartz, Lotta
Acid rock drainage (ARD) often contains ferrous iron, sulphate and high concentrations of trace elements detrimental to the environment. Future costs will be enormous if the problem is not treated today. Simple and cost-effective methods for remediation of historical mine sites are therefore desired. In this study, three mine waters were mixed with alkaline ash leachates, and the fate of trace elements from both the mine waters (Cd, Cu, Pb, Zn, Ni and Co) and the ash leachates (Cr and Mo) was studied. Addition of ash water precipitates hydrous ferric oxides (HFO) and hydrous aluminium oxides (HAO) induced trace element sorption and coprecipitation. Composition of the formed HFO/HAO mix determines efficiency of the sorption and the relative order of sorption for different trace elements. Sorption occurred much earlier (often one pH unit or more) in a system with high iron concentrations compared to systems with lower iron concentrations. Removal of cadmium and zinc was low, below pH 8, if the amount of precipitates was low. Using ash for generation of alkaline water may be a problem with regard to chromium and molybdenum. This study shows that it is possible to avoid problems with molybdenum by keeping the final pH around 7, and chromium(VI) from the ash water will be reduced into chromium(III) and precipitated as the hydroxide in the presence of iron(II). Results imply that it is possible to also use fly ashes in alkaline leach beds in order to neutralize ARD followed by precipitation and sorption of trace elements.
Mostrar más [+] Menos [-]Pathological and Hormonal Changes in Freshwater Fishes Due to Exposure to Heavy Metals Pollutants Texto completo
2011
Ebrahimi, Mansour | Taherianfard, Mahnaz
The concentrations of major heavy metals in organs of two cyprinid fish and in water collected from three sections of the Kor River, Iran, were determined using the induction coupled plasma method. The concentrations of heavy metals in tissue of fish from the middle sampling zone were significantly higher (pâ<â0.05) than those from the other two sampling zones, whereas no significant differences (pâ>â0.05) were detected between the two sexes and species. Estradiol in females and progesterone and testosterone in males from the middle study site were significantly (pâ<â0.05) lower than values from the other two sites. Pathological changes in blood cells, liver, and kidneys of fishes were significantly higher in highly polluted areas (middle sampling zone). So heavy metals exposure can effectively decreases estrogenic and androgenic secretion in fish. These results show that industrial activities have polluted the river and that heavy metals exposure can induce pathological changes in fish organs.
Mostrar más [+] Menos [-]Photolysis, Sonolysis, and Photosonolysis of Trichloroethane (TCA), Trichloroethylene (TCE), and Tetrachloroethylene (PCE) Without Catalyst Texto completo
2011
Rashid, Md Mamunur | Sato, Chikashi
Photolysis, sonolysis, and photosonolysis of common groundwater contaminants, namely 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene, were investigated using a flow-through photosono reactor system. Simulated groundwater containing the chlorinated volatile organic compounds (VOCs) was exposed to ultraviolet light (UV), ultrasonication (US), and UV and US concurrently (UVUS), without a photo catalyst. VOC removal efficiencies of the UV, US, and UVUS treatment processes were computed from the VOC concentrations in influent and effluent of the reactor. The process using UVUS exhibited larger degradation efficiencies than that with UV and US separately in most cases; however, statistical analysis showed that the UVUS treatment efficiency is likely to be additive of the UV and US treatment efficiencies. The results also showed that the increase of the detention time from 26 to 60 min had no significant effect on the VOC removal efficiencies in these processes.
Mostrar más [+] Menos [-]Evolution of the Soil and Vegetation Cover on Road Embankments after the Application of Sewage Sludge Texto completo
2011
Ferrer, Andrés | Mochón, Ignacio | De Oña, Juan | Osorio, Francisco
This research study used sewage sludge from urban wastewater treatment plants to restore road embankments. The results have been used to propose a series of basic principles for the application of sludge in this context. In the study, six experimental plots (each composed of one cut slope and one fill slope) were set up on a highway located in the province of Jaen (Spain). The soil and vegetation in the plots were restored by a conventional hydroseeding process, with each plot receiving a different sludge dosage. A control plot did not receive any treatment at all, whereas another plot was hydroseeded, but without any sludge added to the slurry mix. In the plots, soil evolution was controlled from the moment that the embankment was created and hydroseeded until the present. As part of the soil monitoring process, agronomic parameters and the heavy metal content of the soil were analyzed in the laboratory. Another parameter of analysis was the vegetation cover, which was studied on the basis of on-site visual inspections and the rasterization of images with a view to calculate the percentage of vegetation cover on each plot. Results showed the effectiveness of sewage sludge as an organic complement in the restoration of road embankments. Its viability is enhanced by the fact that the sludge can be applied with the same methods used in public highway construction. The results also showed the optimal sludge dosage to be used in the slurry mix during the hydroseeding process.
Mostrar más [+] Menos [-]An Experimental and Modelling Study of Cu2+ Binding on Humic Acids at Various Solution Conditions. Application of the NICA-Donnan Model Texto completo
2011
Vidali, Roza | Remoundaki, Emmanouela | Tsezos, Marios
Humic substances are characterized by a strong binding capacity for both metals and organic pollutants, affecting their mobility and bioavailability. The understanding of the mechanisms of proton and metal binding to humic substances is of fundamental importance in geochemical modelling and prediction of cation speciation in the environment. This work reports results on copper binding on humic acids obtained through a thorough experimental and modelling approach. Two humic acids, a reference purified peat humic acid isolated by the International Humic Substances Society (IHSS) and a humic acid from a Greek soil, were experimentally studied at various pH values (4, 6 and 8), humic acid concentrations (ranging from 20 to 200 mg L−1) and ionic strength (0.1 and 0.01 M NaNO3). The binding of copper to humic acids was determined over wide ranges of copper ion concentrations using a copper ion selective electrode. The copper binding isotherms obtained at different conditions have shown that copper binding is dependent on the pH and ionic strength of the solution and on the concentration of both humic acids. Copper binding experimental data were fitted to non-ideal competitive adsorption NICA-Donnan model and the model parameter values were calculated. Both Cu2+ and CuOH+ species binding to humic acid with different binding affinities were considered. Two sets of the NICA-Donnan parameters have been calculated: one for humic acid concentrations of ≥100 mg L−1and one for humic acid concentration of 20 mg L−1. The meaning of the parameters values for each concentration level is also discussed.
Mostrar más [+] Menos [-]Biodegradation of a Bioemulsificant Exopolysaccharide (EPS₂₀₀₃) by Marine Bacteria Texto completo
2011
Cappello, S. | Crisari, A. | Denaro, R. | Crescenzi, F. | Porcelli, F. | Yakimov, M. M.
The aim of the study is to analyze the biodegradation capacity of a biosurfactant exopolysaccharide (EPS₂₀₀₃) by heterotrophic marine bacterial strains. During the initial screening performed in two sites located at the harbor of Messina for analyzing the response of marine bacterial population with the presence of biosurfactant EPS₂₀₀₃, ten bacterial strains capable to degrade this substance were isolated. Between the bacterial strains isolated, two representative bacterial strains, isoDES-01, clustered with Pseudoalteromonas sp. A28 (100%), and isoDES-07, closely related to Vibrio proteolyticus (98.9%), were chosen for mineralization and respirometry test, performed to evaluate biodegradability potential of EPS₂₀₀₃. Assays of bacterial growth and measure of concentration of total RNA were also performed. More than 90% of EPS₂₀₀₃ was mineralized by the isoDE01 strain for biomass formation and respiration, while EPS₂₀₀₃ mineralization by the isoDE-07 strain was less effective, reaching 60%. This approach combines the study of the microbial community with its functional aspects (i.e., mineralization and respirometry test) allowing a more precise assessment of biosurfactant degradation. These results enhance our knowledge of microbial ecology of EPS-degrading bacteria and the mechanisms by which this biodegradation occurs. This will prove helpful for predicting the environmental fate of these compounds and for developing practical EPS₂₀₀₃ bioremediation strategies from future marine hydrocarbon pollution.
Mostrar más [+] Menos [-]DDT in Biota of Paranaguá Bay, Southern Brazil: Recent Input and Rapid Degradation Texto completo
2011
Liebezeit, Gerd | Brepohl, Daniela | Rizzi, Juliane | Guebert, Flavia | Krome, Mats | Machado, Eunice | Pijanowska, Ursula
The presence of recent dichlorodiphenyltrichloroethane (DDT) inputs is established for Paranaguá Bay biota, i.e. bivalves, fish and one sponge. Values ranged from 6.9 to 156.2 ng ΣDDT/g dry weight. Three fish species analysed showed ΣDDT values from 36.8 to 92.1 ng/g dry weight. The highest contents (up to 156.2 ng ΣDDT/g dry weight) were found for mangrove oysters (Crassostrea rhizophorae) at locations affected by sewage discharge from Paranaguá City. Turtles as herbivores were not affected by this input with values of 0.7 and 2.2 ng ΣDDT/g dry weight. The areal distribution of samples suggests that usage of DDT is widespread around the bay. Fresh DDT input is degraded to DDE and DDD within approximately 5 months.
Mostrar más [+] Menos [-]Ecosystem Structure and Function are Complementary Measures of Water Quality in a Polluted, Spring-Influenced River Texto completo
2011
Hopkins, Jessica M. | Marcarelli, Amy M. | Bechtold, Heather A.
We tested how ecosystem structure (macroinvertebrate community and primary producers) and functions (leaf decay and open-water metabolism) are related to water quality in the Portneuf River, southeast Idaho. This river is polluted with excess nutrients and fine sediment and simultaneously demonstrates a range of hydrologic conditions due to a variety of groundwater and spring inputs. Macroinvertebrate abundance, functional feeding group composition, and diversity responded most to hydrology due to affinity of the invasive New Zealand mudsnail for spring-influenced conditions. Macrophytes were most abundant at spring-influenced sites, while benthic periphyton standing crop was highest at sites with highest nutrient concentrations. Leaf decay rates increased by 50% at spring-influenced sites and showed no response to 3-100-fold differences in nutrient concentrations. Finally, primary production measured via open-water metabolism was highest at spring-influenced sites, which tended to have low turbidity. Community respiration, however, was greatest at the site with the highest nutrient concentrations. Therefore, open-water metabolism was a useful indicator of water quality in this nutrient-polluted river, while invertebrate community structure and leaf decay did not reflect large differences in water quality among sites. Our findings suggest that structure and function metrics provide complementary information on biotic responses to water pollution and that these metrics should be used in concert to more fully understand and monitor biotic responses to water pollution and hydrologic alterations in streams and rivers.
Mostrar más [+] Menos [-]Evaluation of the Sub-lethal Toxicity of Bleached Kraft Pulp Mill Effluent to Carassius auratus and Dicentrarchus labrax Texto completo
2011
Diniz, Mário S. | Pereira, Ruth | Freitas, Ana C. | Rocha-Santos, Teresa A. P. | Castro, Luisa | Peres, Isabel | Duarte, Armando C.
The effluents from bleached Kraft pulp mill (BKME) and paper industry are toxic to different aquatic organisms being an important source of contamination to aquatic environments due to the presence of several chemicals produced during the production of Kraft pulp. The main objective of the present study was to evaluate the exposure effects of a secondary-treated BKME in two different species of fish: Carassius auratus and Dicentrarchus labrax. Both species were exposed to different concentrations of secondary-treated effluent (1%, 10%, 25%, 50%, 100%) in semi-static tests under controlled laboratory conditions. At the end of the experimental period (21 days), samples of livers were collected for CYP1A determination and histopathological evaluation. The results show significant changes (p < 0.05) of CYP1A induction in carp exposed to 50% and in sea bass exposed to 25% of the effluent. Histopathological alterations were also observed according to the different concentrations of the tested effluent suggesting that tested BKME cause damage to exposed organisms.
Mostrar más [+] Menos [-]