Refinar búsqueda
Resultados 911-920 de 6,548
PAHs emissions from residential biomass burning in real-world cooking stoves in rural China Texto completo
2020
Du, Wei | Yun, Xiao | Chen, Yuanchen | Zhong, Qirui | Wang, Wei | Wang, Lizhi | Qi, Meng | Shen, Guofeng | Tao, Shu
Indoor biomass burning is a major contributor to the emission of PAHs (polycyclic aromatic hydrocarbons) in China. To date, estimates of PAH emissions from the burning of biomass have involved considerable uncertainty, mostly from the lack of real-world measurements of emission factors. In this study, we conducted a comprehensive evaluation on PAH emissions from biomass burning in real-world cooking stoves in three Chinese provinces. PAH emission factors, in both particle- and gas-phase, from 11 fuel-stove combinations were measured and the provincial emissions were estimated based on the measured emission factors and fuel consumption. The measured PAH₂₈ emission factors (including 16 US EPA priority PAHs and 12 non-priority PAHs) ranged from 42 mg/kg to 370 mg/kg, with an order of magnitude difference, which was mostly affected by fuel type. The emission factors measured in this study were generally higher than those reported in laboratory studies and were comparable with field studies. The gas-particle distribution indicated that the absorption of PAHs by organic carbon in particulate matter (PM) was the dominant sorption mechanism in gas-particle distribution. The composition profile was different from previous studies, especially for non-priority PAHs, which are highly toxic and should be given more attention. Following the disparities in composition profiles, our study suggests that source apportionment based on single- or multi-diagnostic ratios may lead to large bias and uncertainties. It appears that the toxicity potential of PAHs in northern China emitted from combustion of crop residues is greater than that in southern China where PAHs are mainly emitted from wood combustion.
Mostrar más [+] Menos [-]The association between metal exposure and semen quality in Chinese males: The mediating effect of androgens Texto completo
2020
Liu, Peiyi | Yuan, Guanxiang | Zhou, Qi | Liu, Yu | He, Xinpeng | Zhang, Huimin | Guo, Yinsheng | Wen, Ying | Huang, Suli | Ke, Yuebin | Chen, Jinquan
As a crucial factor in male reproduction, androgens may represent an intermediate biological mechanism linking metal exposure with effects on semen quality. This study aimed to investigate the association between metal exposure and semen quality, and to assess the mediating role of seminal androgens between metal exposure and semen quality. We investigated the presence of 10 metals in semen and assessed their effect on semen quality in 1136 men recruited from a hospital in Shenzhen, China. Of these, 464 subjects were randomly selected for 4 androgens detection in semen. Cross-sectional associations between single/multiple metals, androgen levels and semen quality were explored by multivariable linear regressions. Mediation analysis was performed to detect the role of seminal androgens on the association between metal exposure and semen quality. Seminal selenium and iron were positively associated with both sperm concentration and total sperm count. Negative associations were observed between both manganese and zinc and sperm concentration, molybdenum and total sperm count, copper and sperm motility. Furthermore, we found significant dose-dependent relationships between both iron and selenium levels and dihydrotestosterone (DHT), arsenic levels and testosterone, as well as zinc and dehydroepiandrosterone. Mediation analysis indicated that higher seminal iron and selenium were associated with an increasing sperm concentration after controlling for DHT, with 10.32% and 12.89% of these associations were mediated by DHT, respectively. A similar mediation effect of DHT was observed in the associations between iron and selenium levels and total sperm count (13.39% and 21.57% mediation, respectively). Our findings suggested that the presence of selenium and iron in semen was beneficial to sperm concentration and total count. Seminal manganese, zinc, molybdenum and copper may be associated with reduced semen quality. The associations between seminal selenium and iron and sperm concentration and total count were partially explained by the concomitant variation of seminal DHT.
Mostrar más [+] Menos [-]Leaching of herbicidal residues from gravel surfaces – A lysimeter-based study comparing gravels with agricultural topsoil Texto completo
2020
Albers, Christian Nyrop | Jacobsen, Ole Stig | Bester, Kai | Jacobsen, Carsten Suhr | Carvalho, Pedro N.
Evidence from the past shows that pesticide use in populated areas may impact groundwater quality. The approval of herbicides such as diflufenican and glyphosate for use on paved and unpaved gravel surfaces in the European Union is based on their behaviour and fate in agricultural soils. However, this might be very different from their fate in gravel surfaces. We therefore conducted an outdoor study with 21 small lysimeters containing different gravel types and a sandy arable topsoil as control. The lysimeters were sprayed with a commercial product for gardening, containing diflufenican and glyphosate. The concentrations of the herbicides and their relevant degradation products in the outlet was followed for 19 months. Diflufenican, glyphosate and AMPA did not leach from any of the lysimeters. However, one diflufenican degradation product (AE-0) leached from two of the gravel types for more than a year and a second degradation product (AE-B) leached from all gravels for up to one year. Concentrations in the leachate peaked at 0.5–3 μg/L, with highest concentrations over the longest periods observed with rock chippings on top of the gravel. We conclude, that the different properties of gravel compared to those of agricultural soils may lead to very different herbicide leaching patterns but also that the leaching depends highly on the type of gravel and type of herbicide.
Mostrar más [+] Menos [-]Short-term effect of PM1 on hospital admission for ischemic stroke: A multi-city case-crossover study in China Texto completo
2020
Chen, Lijun | Zhang, Yongming | Zhang, Wenyi | Chen, Gongbo | Lü, Peng | Guo, Yuming | Li, Shanshan
This study aims to examine the association between short-term exposures to PM₁, PM₂.₅ and PM₁₀ (particulate matter with aerodynamic diameters ≤1 μm, ≤2.5 μm and ≤10 μm, respectively) and hospital admission for ischemic stroke in China. Daily counts of hospital admission for ischemic stroke were collected in 5 hospitals in China during November 2013 to October 2015. Daily concentrations of PM₁, PM₂.₅ and PM₁₀ were collected in 5 cities where the hospitals were located. A time-stratified case-crossover design was used to examine the hospital-specific PM-ischemic stroke association after controlling for potential confounders. Then the effect estimates were pooled using a random-effect meta-analysis. A total of 68,122 hospital admissions for ischemic stroke were identified from 5 hospitals during the study period. The pooled results showed that exposures to PM₁, PM₂.₅ and PM₁₀ were significantly associated with increased hospital admission for ischemic stroke on the current day and previous 1 day. The RRs (relative risk associated with per 10 μg/m³ increase in each pollutant) and 95%CIs (confidence intervals) for the cumulative effects of PM₁, PM₂.₅ and PM₁₀ on ischemic stroke during lag 0–1 days were 1.014 (1.005, 1.0023), 1.007 (1.000, 1.014) and 1.005 (1.001, 1.009), respectively. In total, 3.5%, 3.6% and 4.1% of hospital admissions for ischemic stroke could be attributable to PM₁, PM₂.₅ and PM₁₀, respectively. Exposures to ambient PM₁, PM₂.₅ and PM₁₀ pollution showed acute adverse effects on hospital admission for ischemic stroke. The health effects of PM₁ should be considered by policy-makers.
Mostrar más [+] Menos [-]Beaches of the Azores archipelago as transitory repositories for small plastic fragments floating in the North-East Atlantic Texto completo
2020
Pham, Christopher K. | Pereira, João M. | Frias, João P.G.L. | Ríos, Noelia | Carriço, Rita | Juliano, Manuela | Rodríguez, Yasmina
Plastic pollution is among the most pervasive stressors currently influencing the marine environment and affecting even the most remote areas. To date, there are still fundamental gaps in our understanding of the major pathways and fate of plastic debris in the oceans. Here we show that oceanic insular environments are important transitory repositories of small plastic items floating in the open ocean. Monthly monitoring of seven beaches over a three-year period demonstrate that beaches of the Azores islands with particular characteristics can capture significant quantities of fragments between 2 and 5 mm in length. The beach with the highest plastic loading rates was found to occasionally accumulate densities exceeding 15,000 fragments m⁻² on part of the backshore. However, a large portion of these fragments can be rapidly washed back into the marine environment. Detailed characterization of those plastic items revealed the typology and size distribution to be similar throughout the seven beaches and through the 33 months surveyed, suggesting a same and unique source. Our results show that these oceanic islands of the North-East Atlantic are under pressure of high quantities of fragmented plastic debris that probably entered the ocean many years ago.
Mostrar más [+] Menos [-]Application of sewage sludge containing environmentally-relevant silver sulfide nanoparticles increases emissions of nitrous oxide in saline soils Texto completo
2020
Wu, Jingtao | Bai, Yunfei | Lu, Bingkun | Li, Cui | Menzies, Neal W. | Bertsch, Paul M. | Wang, Zhanke | Wang, Peng | Kopittke, Peter M.
Silver (Ag) is released from a range of products and accumulates in agricultural soils as silver sulfide (Ag₂S) through the application of Ag-containing biosolids as a soil amendment. Although Ag₂S is comparatively stable, its solubility increases with salinity, potentially altering its impacts on microbial communities due to the anti-microbial properties of Ag. In this study, we investigated the impacts of Ag on the microbially mediated N cycle in saline soils by examining the relationship between the (bio)availability of Ag₂S and microbial functioning following the application of Ag₂S-containing sludge. Synchrotron-based X-ray absorption spectroscopy (XAS) revealed that the Ag₂S was stable within the soil, although extractable Ag concentrations increased up to 18-fold in soils with higher salinity. However, the extractable Ag accounted for <0.05% of the total Ag in all soils and had no impact on plant biomass or soil bacterial biomass. Interestingly, at high soil salinity, Ag₂S significantly increased cumulative N₂O emissions from 80.9 to 229.2 mg kg⁻¹ dry soil (by 180%) compared to the corresponding control sludge treatment, which was ascribed to the increased abundance of nitrification and denitrification-related genes (amoA, nxrB, narG, napA, nirS, and nosZ) and increased relative abundance of denitrifiers (Rhodanobacter, Salinimicrobium, and Zunongwangia). Together, our findings show that the application of Ag₂S-containing sludge to a saline soil can disrupt the N cycle and increase N₂O emissions from agroecosystems.
Mostrar más [+] Menos [-]Sources of oxygenated volatile organic compounds (OVOCs) in urban atmospheres in North and South China Texto completo
2020
Huang, Xiao Feng | Zhang, Bin | Xia, Shi-Yong | Han, Yu | Wang, Chuan | Yu, Guang-He | Feng, Ning
Oxygenated volatile organic compounds (OVOCs) are critical precursors of atmospheric ozone (O₃) and secondary organic aerosols (SOA). Although China is experiencing increasing O₃ pollution from north to south, understanding the major sources of OVOCs in this region is still limited due to their active photochemical behaviors. In this study, five critical OVOCs at a northern urban site (Beijing) and a southern urban site (Shenzhen) were monitored in summer using proton transfer reaction-mass spectrometry (PTR-MS). The mean total concentration of VOCs measured in Beijing (39.4 ppb) was much higher than that measured in Shenzhen (16.7 ppb), with methanol and formaldehyde being the most abundant in concentration at both sites. The source apportionment of daytime OVOCs was conducted effectively using a photochemical age-based parameterization method. Biogenic and anthropogenic secondary sources were the main sources of formaldehyde, acetaldehyde, and acetone at both sites, with a total contribution of 46–82%; acetone also had a large regional-scale background contribution (36–38%); methanol and methyl ethyl ketone (MEK) were mainly derived from anthropogenic primary sources (35–55%) at both sites. In addition, the regional background levels of OVOCs measured in North China were shown to be much higher than those measured in South China. The calculation of the total O₃ formation potential (OFP) of OVOCs highlights the comparable contributions from anthropogenic and biogenic sources in both Beijing and Shenzhen, indicating the important role of biogenic OVOC sources even in polluted environments. Since biogenic sources are already important but uncontrollable, anthropogenic emissions in China need to be restricted even more critically in the future.
Mostrar más [+] Menos [-]Modulation of PAH toxicity on the freshwater organism G. roeseli by microparticles Texto completo
2020
Bartonitz, Astrid | Anyanwu, Ihuoma N. | Geist, Juergen | Imhof, Hannes K. | Reichel, Julia | Graßmann, Johanna | Drewes, Joerg E. | Beggel, Sebastian
Polycyclic aromatic hydrocarbons are widespread and environmentally persistent chemicals that readily bind to particles in air, soil and sediment. Plastic particles, which are also an ubiquitous global contamination problem, may thus modulate their environmental fate and ecotoxicity. First, the acute aqueous toxicity of phenanthrene in adult Gammarus roeseli was determined with a LC₅₀ of 471 μg/L after 24 h and 441 μg/L after 48 h. Second, considering lethal and sublethal endpoints, effects of phenanthrene concentration on G. roeseli were assessed in relation to the presence of anthropogenic and natural particles. The exposure of gammarids in presence of either particle type with phenanthrene resulted after 24 and 48 h in reduced effect size. Particle exposure alone did not result in any effects. The observed reduction of phenanthrene toxicity by polyamide contradicts the discussion of microplastics acting as a vector or synergistically. Especially, no difference in modulation by plastic particles and naturally occurring sediment particles was measured. These findings can most likely be explained by the similar adsorption of phenanthrene to both particle types resulting in reduced bioavailability.
Mostrar más [+] Menos [-]Sequential recovery of gold and copper from bioleached wastewater using ion exchange resins Texto completo
2020
Choi, Jong-Won | Song, Myung-Hee | Bediako, John Kwame | Yun, Yeoung-Sang
Numerous studies have sought to address the extraction of metals from printed circuit boards by employing bioleaching process. However, separation and recovery of the bioleached metals have always been a bottleneck. Herein, we demonstrate effective recovery of bioleached Au and Cu via selective separation using ion exchange resins. pH-edge experiments revealed high affinity of Amberjet™ 4200 resin towards Au (adsorption capacity > 98%) over the entire pH range from pH 2–10, whereas Amberlite IRC-86 resin recorded very high Cu adsorption at around pH 5. Therefore, a two-step sequential process was designed for the effective separation and recovery of Au and Cu. In the 1st step, Au was completely recovered by using the Amberjet™ 4200 at the natural pH of 7.5. Subsequently, the Au-free solution was adjusted to pH 5 and Cu was recovered by using Amberlite IRC-86 (2nd step). Consequently, 98.7% Au and 78.9% Cu were successfully recovered. Therefore, this study provides a technical guideline for the selective recovery of Au and Cu from bioleached wastewater, which promotes effective waste minimization and efficient resource recovery.
Mostrar más [+] Menos [-]A new route for manufacturing poly(aminophosphonic)-functionalized poly(glycidyl methacrylate)-magnetic nanocomposite - Application to uranium sorption from ore leachate Texto completo
2020
Galhoum, Ahmed A. | Eisa, Wael H. | El-Tantawy El-Sayed, Ibrahim | Tolba, Ahmad A. | Shalaby, Zeinab M. | Mohamady, Said I. | Muhammad, Sally S. | Hussien, Shimaa S. | Akashi, Takaya | Guibal, Eric
A high-energy ball milling of magnetite nanoparticles with amino-phosphonic functionalized poly(glycidyl methacrylate) polymer is used for manufacturing a highly efficient magnetic sorbent for U(VI) sorption from aqueous solutions. The Uranyl ions were adsorbed through the binding with amine and phosphonic groups as confirmed by Fourier Transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. The maximum sorption capacity (up to 270 mg U g⁻¹) occurred at pH = 3–4; Langmuir isotherm well describes the sorption process. Small-size particles allow achieving fast uptake (within ≈90 min of contact); and the kinetic profiles are modeled by the pseudo-second order rate equation. Uranium is successfully desorbed from loaded sorbent using 0.25 M NaHCO₃ solution: Sorbent can be recycled with minimal decrease in sorption and desorption efficiency for at least 6 cycles. The sorbent is efficiently used for U(VI) recovery from the acidic leachates of U-bearing ores (after precipitation pre-treatment). Sorption capacity approaches 190 mg U g⁻¹ despite the presence of high concentrations of Fe and Si: the sorbent has a marked preference for U(VI) (confirmed by distribution ratios and selectivity coefficients).
Mostrar más [+] Menos [-]