Refinar búsqueda
Resultados 911-920 de 6,558
Maternal serum level of manganese, single nucleotide polymorphisms, and risk of spontaneous preterm birth: A nested case-control study in China Texto completo
2020
Hao, Yongxiu | Yan, Lailai | Pang, Yiming | Yan, Huina | Zhang, Le | Liu, Jufen | Li, Nan | Wang, Bin | Zhang, Yali | Li, Zhiwen | Ye, Rongwei | Ren, Aiguo
Manganese (Mn) is an essential trace element, but an excess or accumulation can be toxic. Until now, few studies have examined the effects of maternal Mn level on the risk of spontaneous preterm birth (SPB). The aims of this study were to examine the association between maternal Mn level and the risk of SPB at the early stage of pregnancy, and investigate whether this association was modified by single nucleotide polymorphisms (SNPs) in genes of superoxide dismutase (SOD) and catalase (CAT). We conducted a nested case-control study in three maternal and child health care hospitals in Shanxi province, China, from December 2009 to December 2013. From an overall cohort of 4229 women, 528 were included in our study, including 147 cases of SPB and 381 controls. Maternal blood samples were collected during 4–22 gestational weeks. The maternal serum concentrations of Mn was measured using inductively coupled plasma–mass spectrometry. We found the maternal Mn concentration in the case group (median: 1.55 ng/mL) was significantly higher than that in the control group (median: 1.27 ng/mL). Compared to the lowest level, the SPB risk was significantly increased to 1.44 (95%CI: 0.60–3.43), 2.42 (95%CI: 1.06–5.55) and 2.46 (95%CI: 1.08–5.62) respectively for the second, third and fourth quartiles in first trimester, but not significant in second trimester or overall. When exposure to a high Mn level, women who with AA (6.36, 95%CI: 1.57–25.71) and AG (3.04, 95%CI: 1.59–5.80) of rs2758352, with CC (2.34, 95%CI: 1.31–4.18) of rs699473, and with GG (2.26, 95%CI: 1.22–4.16) of rs769214 were more likely to develop a SPB, but not among women with other genotypes. In conclusion, high maternal serum Mn level is associated with the increased SPB risk in first trimester, and the association is modified by maternal SNPs of SOD2, SOD3 and CAT.
Mostrar más [+] Menos [-]Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: A risk to human health Texto completo
2020
Zhang, Shaqiu | ʻAbbās, Muḥammad | Rehman, Mujeeb Ur | Huang, Yahui | Zhou, Rui | Gong, Siyue | Yang, Hong | Chen, Shuling | Wang, Mingshu | Cheng, Anchun
With the induction of various emerging environmental contaminants such as antibiotic resistance genes (ARGs), environment is considered as a key indicator for the spread of antimicrobial resistance (AMR). As such, the ARGs mediated environmental pollution raises a significant public health concern worldwide. Among various genetic mechanisms that are involved in the dissemination of ARGs, integrons play a vital role in the dissemination of ARGs. Integrons are mobile genetic elements that can capture and spread ARGs among environmental settings via transmissible plasmids and transposons. Most of the ARGs are found in Gram-negative bacteria and are primarily studied for their potential role in antibiotic resistance in clinical settings. As one of the most common microorganisms, Escherichia coli (E. coli) is widely studied as an indicator carrying drug-resistant genes, so this article aims to provide an in-depth study on the spread of ARGs via integrons associated with E. coli outside clinical settings and highlight their potential role as environmental contaminants. It also focuses on multiple but related aspects that do facilitate environmental pollution, i.e. ARGs from animal sources, water treatment plants situated at or near animal farms, agriculture fields, wild birds and animals. We believe that this updated study with summarized text, will facilitate the readers to understand the primary mechanisms as well as a variety of factors involved in the transmission and spread of ARGs among animals, humans, and the environment.
Mostrar más [+] Menos [-]Elevated CO2 mitigates the negative effect of CeO2 and Cr2O3 nanoparticles on soil bacterial communities by alteration of microbial carbon use Texto completo
2020
Luo, Jipeng | Song, Yuchao | Liang, Jiabin | Li, Jinxing | Islam, Ejazul | Li, Tingqiang
The interactive effects of elevated atmospheric CO₂ and nanoparticles (NPs) on the structure and function of soil bacterial community remain unknown. Here we compared the impacts of CeO₂ (nCeO₂) and Cr₂O₃ (nCr₂O₃) nanoparticles on the taxonomic compositions and functional attributes of bacterial communities under elevated CO₂ (eCO₂). The stimulated enzyme activities (dehydrogenase, acid phosphatase and urease), increased microbial biomass carbon (MBC), and higher bacterial alpha-diversity were observed under the combined effects of eCO₂ and NPs compared to the single NP treatment, indicating eCO₂ could mitigate the adverse effect of NPs on soil microorganisms. NPs and eCO₂ are important factors influencing the alpha- and beta-diversity (17% and 18% of variations were explained) as well as functional profile (20% and 26% of variations were explained) of bacterial communities. Rising CO₂ level promoted the resilience of NP-resistant bacterial populations, primarily the members of Alphaproteobacteria, Gammaproteobacteria and Bacteroidia, which are also characterized by the fast carbon use capability. Moreover, the significantly (P < 0.05) higher metabolic quotient (qCO₂), reduced available carbon and overrepresented carbon metabolism genes at eCO₂vs. ambient CO₂ (aCO₂) indicate the acceleration of available carbon turnover in NP-exposed soils. Correlation analysis revealed that mitigation of NPs toxicity by eCO₂ could be attributed to the remarkable decline of bioavailable metals disassociated from NPs and available carbon level, as well as promotion of the rapid carbon-metabolizing microbes. Our study pointed out the positive role of eCO₂ in alleviating the adverse effect of NPs on microbiological soil environment, and results can serve as important basis in establishing guidelines for lowering the ecotoxicity of NPs.
Mostrar más [+] Menos [-]Biological mechanisms of cadmium accumulation in edible Amaranth (Amaranthus mangostanus L.) cultivars promoted by salinity: A transcriptome analysis Texto completo
2020
Guo, Shi-Hong | Jiang, Ling-Yan | Xu, Zhi-Min | Li, Qu-Sheng | Wang, Jun-Feng | Ye, Han-Jie | Wang, Lili | He, Bao-Yan | Zhou, Chu | Zeng, E. Y. (Eddy Y.)
Strategies to prevent cadmium (Cd) mobilization by crops under salinity conditions differs among distinct genotypes, but the biological mechanisms of Cd accumulation in different genotype crops promoted by salinity have remained scarce. In this study, we investigated the biological mechanisms of Cd accumulation in two quite different amaranth cultivars of low-Cd accumulator Quanhong (QH) and high-Cd accumulator Liuye (LY) in response to salt stress. Transcriptomes analysis was carried out on leaves and roots tissues of LY and QH grown with exchangeable Cd 0.27 mg kg⁻¹ and salinity 3.0 g kg⁻¹ treatment or control conditions, respectively. A total of 3224 differentially expressed genes (DEGs) in LY (1119 in roots, 2105 in leaves) and 848 in QH (207 in roots, 641 in leaves) were identified. Almost in each fold change category (2-2⁵, 2⁵-2¹⁰, >2¹⁰), the numbers of DEGs induced by salinity in LY treatments were much more than those in QH treatments, indicating that LY is more salt sensitive. Gene ontology (GO) analysis revealed that salinity stress promoted soil acidification and Cd mobilization in LY treatments through the enhancive expression of genes related to adenine metabolism (84-fold enrichment) and proton pumping ATPase (50-fold enrichment) in roots, and carbohydrate hydrolysis (2.5-fold enrichment) in leaves compared with that of whole genome, respectively. The genes expression of organic acid transporter (ALMT) was promoted by 2.71- to 3.94-fold in roots, facilitating the secretion of organic acids. Salt stress also inhibited the expression of key enzymes related to cell wall biosynthesis in roots, reducing the physical barriers for Cd uptake. All these processes altered in LY were more substantially compared with that of QH, suggesting that salt sensitive cultivars might accumulate more Cd and pose a higher health risk.
Mostrar más [+] Menos [-]PAHs emissions from residential biomass burning in real-world cooking stoves in rural China Texto completo
2020
Du, Wei | Yun, Xiao | Chen, Yuanchen | Zhong, Qirui | Wang, Wei | Wang, Lizhi | Qi, Meng | Shen, Guofeng | Tao, Shu
Indoor biomass burning is a major contributor to the emission of PAHs (polycyclic aromatic hydrocarbons) in China. To date, estimates of PAH emissions from the burning of biomass have involved considerable uncertainty, mostly from the lack of real-world measurements of emission factors. In this study, we conducted a comprehensive evaluation on PAH emissions from biomass burning in real-world cooking stoves in three Chinese provinces. PAH emission factors, in both particle- and gas-phase, from 11 fuel-stove combinations were measured and the provincial emissions were estimated based on the measured emission factors and fuel consumption. The measured PAH₂₈ emission factors (including 16 US EPA priority PAHs and 12 non-priority PAHs) ranged from 42 mg/kg to 370 mg/kg, with an order of magnitude difference, which was mostly affected by fuel type. The emission factors measured in this study were generally higher than those reported in laboratory studies and were comparable with field studies. The gas-particle distribution indicated that the absorption of PAHs by organic carbon in particulate matter (PM) was the dominant sorption mechanism in gas-particle distribution. The composition profile was different from previous studies, especially for non-priority PAHs, which are highly toxic and should be given more attention. Following the disparities in composition profiles, our study suggests that source apportionment based on single- or multi-diagnostic ratios may lead to large bias and uncertainties. It appears that the toxicity potential of PAHs in northern China emitted from combustion of crop residues is greater than that in southern China where PAHs are mainly emitted from wood combustion.
Mostrar más [+] Menos [-]The association between metal exposure and semen quality in Chinese males: The mediating effect of androgens Texto completo
2020
Liu, Peiyi | Yuan, Guanxiang | Zhou, Qi | Liu, Yu | He, Xinpeng | Zhang, Huimin | Guo, Yinsheng | Wen, Ying | Huang, Suli | Ke, Yuebin | Chen, Jinquan
As a crucial factor in male reproduction, androgens may represent an intermediate biological mechanism linking metal exposure with effects on semen quality. This study aimed to investigate the association between metal exposure and semen quality, and to assess the mediating role of seminal androgens between metal exposure and semen quality. We investigated the presence of 10 metals in semen and assessed their effect on semen quality in 1136 men recruited from a hospital in Shenzhen, China. Of these, 464 subjects were randomly selected for 4 androgens detection in semen. Cross-sectional associations between single/multiple metals, androgen levels and semen quality were explored by multivariable linear regressions. Mediation analysis was performed to detect the role of seminal androgens on the association between metal exposure and semen quality. Seminal selenium and iron were positively associated with both sperm concentration and total sperm count. Negative associations were observed between both manganese and zinc and sperm concentration, molybdenum and total sperm count, copper and sperm motility. Furthermore, we found significant dose-dependent relationships between both iron and selenium levels and dihydrotestosterone (DHT), arsenic levels and testosterone, as well as zinc and dehydroepiandrosterone. Mediation analysis indicated that higher seminal iron and selenium were associated with an increasing sperm concentration after controlling for DHT, with 10.32% and 12.89% of these associations were mediated by DHT, respectively. A similar mediation effect of DHT was observed in the associations between iron and selenium levels and total sperm count (13.39% and 21.57% mediation, respectively). Our findings suggested that the presence of selenium and iron in semen was beneficial to sperm concentration and total count. Seminal manganese, zinc, molybdenum and copper may be associated with reduced semen quality. The associations between seminal selenium and iron and sperm concentration and total count were partially explained by the concomitant variation of seminal DHT.
Mostrar más [+] Menos [-]Leaching of herbicidal residues from gravel surfaces – A lysimeter-based study comparing gravels with agricultural topsoil Texto completo
2020
Albers, Christian Nyrop | Jacobsen, Ole Stig | Bester, Kai | Jacobsen, Carsten Suhr | Carvalho, Pedro N.
Evidence from the past shows that pesticide use in populated areas may impact groundwater quality. The approval of herbicides such as diflufenican and glyphosate for use on paved and unpaved gravel surfaces in the European Union is based on their behaviour and fate in agricultural soils. However, this might be very different from their fate in gravel surfaces. We therefore conducted an outdoor study with 21 small lysimeters containing different gravel types and a sandy arable topsoil as control. The lysimeters were sprayed with a commercial product for gardening, containing diflufenican and glyphosate. The concentrations of the herbicides and their relevant degradation products in the outlet was followed for 19 months. Diflufenican, glyphosate and AMPA did not leach from any of the lysimeters. However, one diflufenican degradation product (AE-0) leached from two of the gravel types for more than a year and a second degradation product (AE-B) leached from all gravels for up to one year. Concentrations in the leachate peaked at 0.5–3 μg/L, with highest concentrations over the longest periods observed with rock chippings on top of the gravel. We conclude, that the different properties of gravel compared to those of agricultural soils may lead to very different herbicide leaching patterns but also that the leaching depends highly on the type of gravel and type of herbicide.
Mostrar más [+] Menos [-]Short-term effect of PM1 on hospital admission for ischemic stroke: A multi-city case-crossover study in China Texto completo
2020
Chen, Lijun | Zhang, Yongming | Zhang, Wenyi | Chen, Gongbo | Lü, Peng | Guo, Yuming | Li, Shanshan
This study aims to examine the association between short-term exposures to PM₁, PM₂.₅ and PM₁₀ (particulate matter with aerodynamic diameters ≤1 μm, ≤2.5 μm and ≤10 μm, respectively) and hospital admission for ischemic stroke in China. Daily counts of hospital admission for ischemic stroke were collected in 5 hospitals in China during November 2013 to October 2015. Daily concentrations of PM₁, PM₂.₅ and PM₁₀ were collected in 5 cities where the hospitals were located. A time-stratified case-crossover design was used to examine the hospital-specific PM-ischemic stroke association after controlling for potential confounders. Then the effect estimates were pooled using a random-effect meta-analysis. A total of 68,122 hospital admissions for ischemic stroke were identified from 5 hospitals during the study period. The pooled results showed that exposures to PM₁, PM₂.₅ and PM₁₀ were significantly associated with increased hospital admission for ischemic stroke on the current day and previous 1 day. The RRs (relative risk associated with per 10 μg/m³ increase in each pollutant) and 95%CIs (confidence intervals) for the cumulative effects of PM₁, PM₂.₅ and PM₁₀ on ischemic stroke during lag 0–1 days were 1.014 (1.005, 1.0023), 1.007 (1.000, 1.014) and 1.005 (1.001, 1.009), respectively. In total, 3.5%, 3.6% and 4.1% of hospital admissions for ischemic stroke could be attributable to PM₁, PM₂.₅ and PM₁₀, respectively. Exposures to ambient PM₁, PM₂.₅ and PM₁₀ pollution showed acute adverse effects on hospital admission for ischemic stroke. The health effects of PM₁ should be considered by policy-makers.
Mostrar más [+] Menos [-]Beaches of the Azores archipelago as transitory repositories for small plastic fragments floating in the North-East Atlantic Texto completo
2020
Pham, Christopher K. | Pereira, João M. | Frias, João P.G.L. | Ríos, Noelia | Carriço, Rita | Juliano, Manuela | Rodríguez, Yasmina
Plastic pollution is among the most pervasive stressors currently influencing the marine environment and affecting even the most remote areas. To date, there are still fundamental gaps in our understanding of the major pathways and fate of plastic debris in the oceans. Here we show that oceanic insular environments are important transitory repositories of small plastic items floating in the open ocean. Monthly monitoring of seven beaches over a three-year period demonstrate that beaches of the Azores islands with particular characteristics can capture significant quantities of fragments between 2 and 5 mm in length. The beach with the highest plastic loading rates was found to occasionally accumulate densities exceeding 15,000 fragments m⁻² on part of the backshore. However, a large portion of these fragments can be rapidly washed back into the marine environment. Detailed characterization of those plastic items revealed the typology and size distribution to be similar throughout the seven beaches and through the 33 months surveyed, suggesting a same and unique source. Our results show that these oceanic islands of the North-East Atlantic are under pressure of high quantities of fragmented plastic debris that probably entered the ocean many years ago.
Mostrar más [+] Menos [-]Application of sewage sludge containing environmentally-relevant silver sulfide nanoparticles increases emissions of nitrous oxide in saline soils Texto completo
2020
Wu, Jingtao | Bai, Yunfei | Lu, Bingkun | Li, Cui | Menzies, Neal W. | Bertsch, Paul M. | Wang, Zhanke | Wang, Peng | Kopittke, Peter M.
Silver (Ag) is released from a range of products and accumulates in agricultural soils as silver sulfide (Ag₂S) through the application of Ag-containing biosolids as a soil amendment. Although Ag₂S is comparatively stable, its solubility increases with salinity, potentially altering its impacts on microbial communities due to the anti-microbial properties of Ag. In this study, we investigated the impacts of Ag on the microbially mediated N cycle in saline soils by examining the relationship between the (bio)availability of Ag₂S and microbial functioning following the application of Ag₂S-containing sludge. Synchrotron-based X-ray absorption spectroscopy (XAS) revealed that the Ag₂S was stable within the soil, although extractable Ag concentrations increased up to 18-fold in soils with higher salinity. However, the extractable Ag accounted for <0.05% of the total Ag in all soils and had no impact on plant biomass or soil bacterial biomass. Interestingly, at high soil salinity, Ag₂S significantly increased cumulative N₂O emissions from 80.9 to 229.2 mg kg⁻¹ dry soil (by 180%) compared to the corresponding control sludge treatment, which was ascribed to the increased abundance of nitrification and denitrification-related genes (amoA, nxrB, narG, napA, nirS, and nosZ) and increased relative abundance of denitrifiers (Rhodanobacter, Salinimicrobium, and Zunongwangia). Together, our findings show that the application of Ag₂S-containing sludge to a saline soil can disrupt the N cycle and increase N₂O emissions from agroecosystems.
Mostrar más [+] Menos [-]