Refinar búsqueda
Resultados 921-930 de 5,098
Mobilisation kinetics of hazardous elements in marine plastics subject to an avian physiologically-based extraction test
2018
Turner, Andrew
Samples of plastic collected from two beaches in southwest England (n = 185) have been analysed by XRF spectrometry for elements that are hazardous or restricted in synthetic polymers (namely, As, Ba, Br, Cd, Cr, Hg, Pb, Sb and Se). Overall, one or more restricted element was detected in 151 samples, with 15 cases exhibiting non-compliance with respect to the Restriction of Hazardous Substances (RoHS) Directive. Twelve plastics that were RoHS-non-compliant were subsequently processed into microplastic-sized fragments and subjected to an avian physiologically-based extraction test (PBET) that simulates the chemical conditions in the gizzard-proventriculus of the northern fulmar. Kinetic profiles of metal and metalloid mobilisation in the PBET were fitted using a pseudo-first-order diffusion model with rate constants ranging from ∼0.02 to 0.5 h−1, while profiles for Br were better fitted with a parabolic diffusion model and rate constants of 7.4–9.5 (μg L−1)−1h−1/2. Bioaccessibilities, based on maximum or equilibrium concentrations mobilised relative to total (XRF) concentrations, ranged from <1% for Cd and Se in polyethylene and polypropylene to over 10% for Br in a sample of expanded polystyrene and Pb in a sample of PVC. Calculations suggest that ingested plastic could contribute about 6% and 30% of a seabird's exposure to and accumulation of Pb and brominated compounds, respectively.
Mostrar más [+] Menos [-]Transcriptome signatures of p,p´-DDE-induced liver damage in Mus spretus mice
2018
Morales-Prieto, Noelia | Ruiz-Laguna, Julia | Sheehan, David | Abril, Nieves
The use of DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) in some countries, although regulated, is contributing to an increased worldwide risk of exposure to this organochlorine pesticide or its derivative p,p’-DDE [1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene]. Many studies have associated p,p’-DDE exposure to type 2 diabetes, obesity and alterations of the reproductive system, but their molecular mechanisms of toxicity remain poorly understood. We have addressed this issue by using commercial microarrays based on probes for the entire Mus musculus genome to determine the hepatic transcriptional signatures of p,p’-DDE in the phylogenetically close mouse species Mus spretus. High-stringency hybridization conditions and analysis assured reliable results, which were also verified, in part, by qRT-PCR, immunoblotting and/or enzymatic activity. Our data linked 198 deregulated genes to mitochondrial dysfunction and perturbations of central signaling pathways (kinases, lipids, and retinoic acid) leading to enhanced lipogenesis and aerobic glycolysis, inflammation, cell proliferation and testosterone catabolism and excretion. Alterations of transcript levels of genes encoding enzymes involved in testosterone catabolism and excretion would explain the relationships established between p,p´-DDE exposure and reproductive disorders, obesity and diabetes. Further studies will help to fully understand the molecular basis of p,p´-DDE molecular toxicity in liver and reproductive organs, to identify effective exposure biomarkers and perhaps to design efficient p,p’-DDE exposure counteractive strategies.
Mostrar más [+] Menos [-]Maternal dietary intake of polyunsaturated fatty acids modifies association between prenatal DDT exposure and child neurodevelopment: A cohort study
2018
Ogaz-González, Rafael | Mérida-Ortega, Ángel | Torres-Sánchez, Luisa | Schnaas, Lourdes | Hernández-Alcaraz, César | Cebrián, Mariano E. | Rothenberg, Stephen J. | García-Hernández, Rosa María | López-Carrillo, Lizbeth
Maternal 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) serum levels during pregnancy have been negatively linked to child neurodevelopment in contrast to intake of omega-3 and -6 (ω-3 and ω-6) fatty acids.To assess whether maternal dietary intake of ω-3 and ω-6 during pregnancy modifies the association between exposure to DDE and child neurodevelopment from age 42–60 months.Prospective cohort study with 142 mother–child pairs performed in Mexico. DDE serum levels were determined by electron capture gas chromatography. Dietary ω-3 and ω-6 intake was estimated by questionnaire. Child neurodevelopment was assessed by McCarthy Scales.Docosahexaenoic (DHA) fatty acid intake significantly modified the association between DDE and motor component: increased maternal DDE was associated with lower motor development in children whose mothers had lower DHA intake (βlog2DDE = −1.25; 95% CI: −2.62, 0.12), in contrast to the non-significant increase among children whose mothers had higher DHA intake (βlog2DDE-motor = 0.50; 95% CI: 0.55, 1.56). Likewise, arachidonic fatty acid (ARA) intake modified the association between DDE and memory component: increased maternal DDE was associated with a significantly larger reduction in the memory component in children whose mothers had lower ARA intake (βlog2DDE = −1.31; 95% CI: −2.29, −0.32) than children whose mothers had higher ARA intake (βlog2DDE-memory = 0.17; 95% CI: −0.78, 1.11).Dietary intake of DHA and ARA during pregnancy may protect against child neurodevelopment damage associated with prenatal maternal DDE levels.
Mostrar más [+] Menos [-]Spatial glyphosate and AMPA redistribution on the soil surface driven by sediment transport processes – A flume experiment
2018
Bento, Célia P.M. | Commelin, Meindert C. | Baartman, Jantiene E.M. | Yang, Xiaomei | Peters, Piet | Mol, Hans G.J. | Ritsema, Coen J. | Geissen, Violette
This study investigates the influence of small-scale sediment transport on glyphosate and AMPA redistribution on the soil surface and on their off-site transport during water erosion events. Both a smooth surface (T1) and a surface with “seeding lines on the contour” (T2) were tested in a rainfall simulation experiment using soil flumes (1 × 0.5 m) with a 5% slope. A dose of 178 mg m⁻² of a glyphosate-based formulation (CLINIC®) was applied on the upper 0.2 m of the flumes. Four 15-min rainfall events (RE) with 30-min interval in between and a total rainfall intensity of 30 mm h⁻¹ were applied. Runoff samples were collected after each RE in a collector at the flume outlet. At the end of the four REs, soil and sediment samples were collected in the application area and in four 20 cm-segments downslope of the application area. Samples were collected according to the following visually distinguished soil surface groups: light sedimentation (LS), dark sedimentation (DS), background and aggregates.Results showed that runoff, suspended sediment and associated glyphosate and AMPA off-site transport were significantly lower in T2 than in T1. Glyphosate and AMPA off-site deposition was higher for T2 than for T1, and their contents on the soil surface decreased with increasing distance from the application area for all soil surface groups and in both treatments. The LS and DS groups presented the highest glyphosate and AMPA contents, but the background group contributed the most to the downslope off-site deposition.Glyphosate and AMPA off-target particle-bound transport was 9.4% (T1) and 17.8% (T2) of the applied amount, while water-dissolved transport was 2.8% (T1) and 0.5% (T2). Particle size and organic matter influenced the mobility of glyphosate and AMPA to off-target areas. These results indicate that the pollution risk of terrestrial and aquatic environments through runoff and deposition can be considerable.
Mostrar más [+] Menos [-]Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem
2018
Hao, Yi | Ma, Chuanxin | Zhang, Zetian | Song, Youhong | Cao, Weidong | Guo, Jing | Zhou, Guopeng | Rui, Yukui | Liu, Liming | Xing, Baoshan
The aim of this study was to compare the toxicity effects of carbon nanomaterials (CNMs), namely fullerene (C60), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs), on a mini-ecosystem of rice grown in a loamy potted soil. We measured plant physiological and biochemical parameters and examined bacterial community composition in the CNMs-treated plant–soil system. After 30 days of exposure, all the three CNMs negatively affected the shoot height and root length of rice, significantly decreased root cortical cells diameter and resulted in shrinkage and deformation of cells, regardless of exposure doses (50 or 500 mg/kg). Additionally, at the high exposure dose of CNM, the concentrations of four phytohormones, including auxin, indoleacetic acid, brassinosteroid and gibberellin acid 4 in rice roots significantly increased as compared to the control. At the high exposure dose of MWCNTs and C60, activities of the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) in roots increased significantly. High-throughput sequencing showed that three typical CNMs had little effect on shifting the predominant soil bacterial species, but the presence of CNMs significantly altered the composition of the bacterial community. Our results indicate that different CNMs indeed resulted in environmental toxicity to rice and soil bacterial community in the rhizosphere and suggest that CNMs themselves and their incorporated products should be reasonably used to control their release/discharge into the environment to prevent their toxic effects on living organisms and the potential risks to food safety.
Mostrar más [+] Menos [-]Toxicity and mutagenicity of exhaust from compressed natural gas: Could this be a clean solution for megacities with mixed-traffic conditions?
2018
Agarwal, Avinash K. | Ateeq, Bushra | Gupta, Tarun | Singh, Akhilendra P. | Pandey, Swaroop K. | Sharma, Nikhil | Agarwal, Rashmi A. | Gupta, Neeraj K. | Sharma, Hemant | Jain, Ayush | Shukla, Pravesh C.
Despite intensive research carried out on particulates, correlation between engine-out particulate emissions and adverse health effects is not well understood yet. Particulate emissions hold enormous significance for mega-cities like Delhi that have immense traffic diversity. Entire public transportation system involving taxis, three-wheelers, and buses has been switched from conventional liquid fuels to compressed natural gas (CNG) in the Mega-city of Delhi. In this study, the particulate characterization was carried out on variety of engines including three diesel engines complying with Euro-II, Euro-III and Euro-IV emission norms, one Euro-II gasoline engine and one Euro-IV CNG engine. Physical, chemical and biological characterizations of particulates were performed to assess the particulate toxicity. The mutagenic potential of particulate samples was investigated at different concentrations using two different Salmonella strains, TA98 and TA100 in presence and absence of liver S9 metabolic enzyme fraction. Particulates emitted from diesel and gasoline engines showed higher mutagenicity, while those from CNG engine showed negligible mutagenicity compared to other test fuels and engine configurations. Polycyclic aromatic hydrocarbons (PAHs) adsorbed onto CNG engine particulates were also relatively fewer compared to those from equivalent diesel and gasoline engines. Taken together, our findings indicate that CNG is comparatively safer fuel compared to diesel and gasoline and can offer a cleaner transport energy solution for mega-cities with mixed-traffic conditions, especially in developing countries.
Mostrar más [+] Menos [-]How microplastics quantities increase with flood events? An example from Mersin Bay NE Levantine coast of Turkey
2018
Gündoğdu, Sedat | Çevik, Cem | Ayat, Berna | Aydoğan, Burak | Karaca, Serkan
Floods caused by heavy rain carry significant amounts of pollutants into marine environments. This study evaluates the effect of multiple floods that occurred in the northeastern Mediterranean region in Turkey between December 2016 and January 2017 on the microplastic pollution in the Mersin Bay. Sampling was repeated in four different stations both before and after the flood period, and it was determined that in the four stations, there was an average of 539,189 MPs/km² before the flood, and 7,699,716 MPs/km² afterwards, representing a 14-fold increase. Fourteen different polymer types were detected in an ATR FT-IR analysis, eight of which were not found in samples collected before the floods. The most common polymer type was identified as polyethylene both pre- and post-flood. The mean particle size, which was 2.37 mm in the pre-flood period, decreased to 1.13 mm in the post-flood period. A hydrodynamic modeling study was implemented to hindcast the current structure and the spatial and temporal distributions of microplastics within the study area. In conclusion, heavy rain and severe floods can dramatically increase the microplastic levels in the sea.
Mostrar más [+] Menos [-]Coal combustion residues and their effects on trace element accumulation and health indices of eastern mud turtles (Kinosternon subrubrum)
2018
Cochran, Jarad P. | Haskins, David L. | Eady, Naya A. | Hamilton, Matthew T. | Pilgrim, Melissa A. | Tuberville, Tracey D.
Coal combustion is a major energy source in the US. The solid waste product of coal combustion, coal combustion residue (CCR), contains potentially toxic trace elements. Before 1980, the US primarily disposed of CCR in aquatic settling basins. Animals use these basins as habitat and can be exposed to CCR, potentially affecting their physiology. To investigate the effects of CCR on eastern mud turtles (Kinosternon subrubrum), we sampled 30 turtles exposed to CCRs and 17 unexposed turtles captured in 2015–2016 from the Savannah River Site (Aiken, SC, USA). For captured turtles, we (1) quantified accumulation of CCR in claw and blood samples, (2) used bacterial killing assays to assess influences of CCR on immune responses, (3) compared hemogregarine parasite loads, and (4) compared metabolic rates via flow-through respirometry between CCR-exposed and unexposed turtles when increased temperature was introduced as an added stressor. Turtles exposed to CCR accumulated CCR-associated trace elements, corroborating previous studies. Blood Se and Sr levels and claw As, Se, and Sr levels were significantly higher in turtles from contaminated sites. Average bacterial killing efficiency was not significantly different between groups. Neither prevalence nor average parasite load significantly differed between CCR-exposed and reference turtles, although parasite load increased with turtle size. Regardless of site, temperature had a significant impact on turtle metabolic rates; as temperature increased, turtle metabolic rates increased. The effect of temperature on turtle metabolic rates was less pronounced for CCR-exposed turtles, which resulted in CCR-exposed turtles having lower metabolic rates than reference turtles at 30 and 35 °C. Our results demonstrate that turtles accumulate CCR from their environment and that accumulation of CCR is associated with changes in turtle physiological functions when additional stressors are present.
Mostrar más [+] Menos [-]Enhanced oxidation of arsenite to arsenate using tunable K+ concentration in the OMS-2 tunnel
2018
Hou, Jingtao | Sha, Zhenjie | Hartley, William | Tan, Wenfeng | Wang, Mingxia | Xiong, Juan | Li, Yuanzhi | Ke, Yujie | Long, Yi | Xue, Shengguo
Cryptomelane-type octahedral molecular sieve manganese oxide (OMS-2) possesses high redox potential and has attracted much interest in its application for oxidation arsenite (As(III)) species of arsenic to arsenate (As(V)) to decrease arsenic toxicity and promote total arsenic removal. However, coexisting ions such as As(V) and phosphate are ubiquitous and readily bond to manganese oxide surface, consequently passivating surface active sites of manganese oxide and reducing As(III) oxidation. In this study, we present a novel strategy to significantly promote As(III) oxidation activity of OMS-2 by tuning K+ concentration in the tunnel. Batch experimental results reveal that increasing K+ concentration in the tunnel of OMS-2 not only considerably improved As(III) oxidation kinetics rate from 0.027 to 0.102 min−1, but also reduced adverse effect of competitive ion on As(III) oxidation. The origin of K+ concentration effect on As(III) oxidation was investigated through As(V) and phosphate adsorption kinetics, detection of Mn2+ release in solution, surface charge characteristics, and density functional theory (DFT) calculations. Experimental results and theoretical calculations confirm that by increasing K+ concentration in the OMS-2 tunnel not only does it improve arsenic adsorption on K+ doped OMS-2, but also accelerates two electrons transfers from As(III) to each bonded Mn atom on OMS-2 surface, thus considerably improving As(III) oxidation kinetics rate, which is responsible for counteracting the adverse adsorption effects by coexisting ions.
Mostrar más [+] Menos [-]Atmospheric nitrogen deposition in the Yangtze River basin: Spatial pattern and source attribution
2018
Xu, Wen | Zhao, Yuanhong | Liu, Xuejun | Dore, Anthony J. | Zhang, Lin | Liu, Lei | Cheng, Miaomiao
The Yangtze River basin is one of the world's hotspots for nitrogen (N) deposition and likely plays an important role in China's riverine N output. Here we constructed a basin-scale total dissolved inorganic N (DIN) deposition (bulk plus dry) pattern based on published data at 100 observational sites between 2000 and 2014, and assessed the relative contributions of different reactive N (Nr) emission sectors to total DIN deposition using the GEOS-Chem model. Our results show a significant spatial variation in total DIN deposition across the Yangtze River basin (33.2 kg N ha⁻¹ yr⁻¹ on average), with the highest fluxes occurring mainly in the central basin (e.g., Sichuan, Hubei and Hunan provinces, and Chongqing municipality). This indicates that controlling N deposition should build on mitigation strategies according to local conditions, namely, implementation of stricter control of Nr emissions in N deposition hotspots but moderate control in the areas with low N deposition levels. Total DIN deposition in approximately 82% of the basin area exceeded the critical load of N deposition for semi-natural ecosystems along the basin. On the basin scale, the dominant source of DIN deposition is fertilizer use (40%) relative to livestock (11%), industry (13%), power plant (9%), transportation (9%), and others (18%, which is the sum of contributions from human waste, residential activities, soil, lighting and biomass burning), suggesting that reducing NH3 emissions from improper fertilizer (including chemical and organic fertilizer) application should be a priority in curbing N deposition. This, together with distinct spatial variations in emission sector contributions to total DIN deposition also suggest that, in addition to fertilizer, major emission sectors in different regions of the basin should be considered when developing synergistic control measures.
Mostrar más [+] Menos [-]