Refinar búsqueda
Resultados 931-940 de 1,546
Water Lettuce Pistia stratiotes L. Response to Lead Toxicity Texto completo
2012
Vesely, Tomas | Neuberg, Marek | Trakal, Lukas | Szakova, Jiřina | Tlustoa, Pavel
The effects of one of the most toxic heavy metals, lead (Pb), applied in two different concentrations and combined with chelate application were investigated on the water macrophyte (Pistia stratiotes L.) physiology. The influences were observed by the chlorophyll and free amino acid content determination. Also the lead accumulation in macrophyte biomass was investigated to assess the potential efficiency of this plant for rhizofiltration of highly Pb-polluted water. Na EDTA and Na citrate were used as chelates and Pb(NO3)2 as lead supplement. The application of organic chelates simulated conditions of an induced phytoextraction process. Statistical analyses were performed as a one-way ANOVA with a subsequent Tukey HSD test at a level of P < 0.05. Pb contents in both root and leaf tissues gradually increased with increasing Pb concentrations in the nutrient solution. More lead was accumulated in leaves than in roots within all treatments. The total chlorophyll content decreased with increased Pb concentration and with a higher content of chelates. The chelate addition increased the total amino acid content in leaves but decreased the total amino acid content in roots. The addition of lead with chelates decreased the dry biomass weight. However, water macrophyte showed extremely high lead accumulation in biomass in the short term (up to 8 days) and this accumulation potential could be used for relatively fast and effective decrease of high concentration of this risk element in contaminated water or sewage.
Mostrar más [+] Menos [-]Assessment of the Effectiveness of a Solar System Heating an Anaerobic Bioreactor Texto completo
2012
Ch. Yiannopoulos, Andrew | Manariotis, Ioannis D. | Chrysikopoulos, Constantinos V.
The performance of a solar system designed to heat a packed bed reactor for anaerobic treatment of municipal wastewater was evaluated, and the feasibility of employing low-scale solar reactors in small settlements or enterprises was investigated. An energy balance was performed using a simple reactor model previously proposed by Yiannopoulos et al. (Bioresource Technology 99:7742–7749, 2008) to estimate the size of a solar system in Patras, Greece. The main objective is to feed the reactor with warm water produced by solar energy and achieve an increase of temperature close to 35°C for the majority of the year. Model simulations indicated that the heat demand of the reactor could be balanced practically by a number of flat plate solar collectors supplying warm water at above 20°C for over 95% of the year. Therefore, the proposed system can offer a viable alternative to enhancing anaerobic treatment in wastewater facilities.
Mostrar más [+] Menos [-]Ozonation of a Carbamazepine Effluent. Designing the Operational Parameters Under Economic Considerations Texto completo
2012
Palo, Patricia | Domínguez, Joaquín R. | Sánchez-Martín, Jesús
Ozonation of water effluent polluted with carbamazepine an ubiquitous and refractory pharmaceutical contaminant, has been addressed. This paper aims to optimize the remediation process through novel considerations, such as economical aspects of operational costs. To this end, firstly, we have defined an efficiency variable which included not only global efficacy terms (pollutant removal) but also kinetic aspects, which has to do with the ozonation chemical rate. This target variable was involved in a design of experiments that optimized air flow, ozone concentration, and pollutant initial content. An optimum was obtained at 55 L·h ⁻ ¹, 0.4 g·m³, and 18 mg·L ⁻ ¹ respectively.
Mostrar más [+] Menos [-]Quantitative Assessment of Effects of Cadmium on the Histological Structure of Poplar and Willow Leaves Texto completo
2012
Luković, J. | Merkulov, Lj | Pajević, S. | Zorić, L. | Nikolić, N. | Borišev, M. | Karanović, D.
Stem cuttings with homogenous diameter of Populus x euramericana (clone I-214) and Salix fragilis L. were grown in growth chamber in water culture method. After 45 days, the plants were treated with 10−7 and 10−5 M cadmium (Cd). As these species have different phytoextraction potentials, there is a need to analyze the level of Cd uptake, its translocation into aboveground organs, and changes in leaf structure. We analyzed micromorphological leaf characteristics: a fresh mass of the root, stem, and leaf, as well as a Cd concentration within them. Besides, we compared 23 micromorphological leaf blade quantitative traits of poplar and willow and monitored the structural changes induced by the intoxication of stem cuttings. Percent of Cd accumulation and translocation in plant organs varied between species. It depended on the level of Cd applied. When compared to the poplar clone, S. fragilis had a smaller leaf area and epidermal cells, thicker palisade tissue, smaller lumen of main vein vessels, and a higher percentage of main vein xylem. S. fragilis had more distinctive xeromorphic characteristics in the lamina structure. Increased concentrations of Cd led to significant structural changes, mainly in the main vein. When searching for valid parameters in assessing plant to be utilized in phytoremediation, it is necessary to take into consideration the interrelation of a large number of micromorphological parameters together with physiological and biochemical characteristics.
Mostrar más [+] Menos [-]Interactive and Single Effects of Ectomycorrhiza Formation and Bacillus cereus on Metallothionein MT1 Expression and Phytoextraction of Cd and Zn by Willows Texto completo
2012
Hrynkiewicz, Katarzyna | Dąbrowska, Grażyna | Baum, Christel | Niedojadlo, Katarzyna | Leinweber, Peter
Single and joint ectomycorrhizal (+ Hebeloma mesophaeum) and bacterial (+ Bacillus cereus) inoculations of willows (Salix viminalis) were investigated for their potential and mode of action in the promotion of cadmium (Cd) and zinc (Zn) phytoextraction. Dual fungal and bacterial inoculations promoted the biomass production of willows in contaminated soil. Single inoculations either had no effect on the plant growth or inhibited it. All inoculated willows showed increased concentrations of nutritional elements (N, P, K and Zn) and decreased concentrations of Cd in the shoots. The lowest biomass production and concentration of Cd in the willows (+ B. cereus) were combined with the strongest expression of metallothioneins. It seems that biotic stress from bacterial invasion increased the synthesis of these stress proteins, which responded in decreased Cd concentrations. Contents of Cd and Zn in the stems of willows were combination-specific, but were always increased in dual inoculated plants. In conclusion, single inoculations with former mycorrhiza-associated B. cereus strains decreased the phytoextraction efficiency of willows by causing biotic stress. However, their joint inoculation with an ectomycorrhizal fungus is a very promising method for promoting the phytoextraction of Cd and Zn through combined physiological effects on the plant.
Mostrar más [+] Menos [-]Twenty-Year Road Traffic Emissions Trend in Greece Texto completo
2012
Progiou, Athena | Ziomas, Ioannis
Air pollutants emissions from traffic are very closely connected to urban air quality, in a local scale, as well as to global problems like climate change, in a large scale. Road transport air pollutants emissions represent, in most cases, a critical parameter for a comprehensive and successful understanding of the mechanisms governing the air pollutants concentrations. Hence, reliable estimations and comprehension of road transport emissions are indispensable in order to set reliable strategies in the direction of air pollution abatement and management of air pollutants and greenhouse gases emissions. In this framework, in the present work, the emissions of air pollutants from road transport in Greece will be presented for the whole period 1990–2009 as it was found that a detailed, accurate and reliable emissions inventory was missing. The whole period emissions variation has clarified the impact of the change in the vehicle fleet, the engine technologies and the fuel quality. The calculated results have revealed that the age of the vehicles and the corresponding engine technology are the critical parameters determining the amount of the pollutants emitted. This was mainly observed in both passenger cars and heavy duty vehicles demonstrating the importance of a renewal programme of the old circulating vehicles in order to set an effective air pollution abatement strategy. Passenger cars were found to be responsible for the major part of most air pollutants emissions except from nitrogen oxides and particulates emissions. Heavy duty vehicles contribute more than 66% to nitrogen oxides and particulates emissions. For the whole time period, all calculated pollutants present a decreasing trend, with the exception of carbon dioxide and nitrous oxide which increase constantly, ranging from −96% for sulphur dioxide to −1% for PM10.
Mostrar más [+] Menos [-]Photocatalytic Degradation of Herbicide Quinmerac in Various Types of Natural Water Texto completo
2012
N. Despotović, Vesna | F. Abramović, Biljana | V. Å ojić, Daniela | J. Kler, Sanja | B. Dalmacija, Milena | J. Bjelica, Luka | Z. OrÄić, Dejan
The efficiency of the photocatalytic degradation of the herbicide quinmerac in aqueous TiO2 suspensions was examined as a function of the type of light source, TiO2 loading, pH, temperature, electron acceptors, and hydroxyl radical (.OH) scavenger. The optimum loading of catalyst was found to be 0.25 mg mL−1 under UV light at pH 7.2, with the apparent activation energy of the reaction being 13.7 kJ mol−1. In the first stage of the reaction, the photocatalytic degradation of quinmerac (50 μM) followed approximately a pseudo-first order kinetics. The most efficient electron acceptor appeared to be H2O2 along with molecular oxygen. By studying the effect of ethanol as an .OH scavenger, it was shown that the heterogeneous catalysis takes place mainly via .OH. The results also showed that the disappearance of quinmerac led to the formation of a number of organic intermediates and ionic byproducts, whereas its complete mineralization occurred in about 120 min. The reaction intermediates (7-chloro-3-methylquinoline-5,8-dione, three isomeric phenols hydroxy-7-chloro-3-methylquinoline-8-carboxylic acids, and 7-chloro-3-(hydroxymethyl)quinoline-8-carboxylic acid) were identified and the kinetics of their appearance/disappearance was followed by LC–ESI–MS/MS. Tentative photodegradation pathways were proposed and discussed. The study also encompassed the effect of quality of natural water on the rate of removal of quinmerac.
Mostrar más [+] Menos [-]Effect of the Heavy Metals Cu, Ni, Cd and Zn on the Growth and Reproduction of Epigeic Earthworms (E. fetida) during the Vermistabilization of Municipal Sewage Sludge Texto completo
2012
Domínguez-Crespo, Miguel A. | Sánchez-Hernández, Z Erika | Torres-Huerta, Aidé M. | Negrete-Rodríguez, Ma. de la Luz X. | Conde-Barajas, Eloy | Flores-Vela, Abelardo
In order to enhance the removal of heavy metals such as Ni, Cu, Zn and Cd from wastewater, different cow dung/sewage sludge ratios were tested to assess the effect of these metals on the adaptability of Eisenia fetida earthworms to the treatment process carried out in a typical plant located in Tamaulipas, Mexico. Two experimental water treatment setups were proposed. The first set of experiments was planned to determine the adequate sewage sludge/cow dung ratio(s), whereas the second arrangement was designed to evaluate the growth performance and fecundity of the earthworms under high heavy metal concentrations. To achieve the objectives, the experiments were conducted for 90 days under controlled environmental conditions. Maximum worm biomass and growth rates were attained in samples containing 25 wt.% of sewage sludge. Weight and mortality of worms were significantly affected by the high levels of heavy metals, making difficult the metal accumulation in the worm tissues.
Mostrar más [+] Menos [-]Polycyclic Aromatic Hydrocarbons, Polychlorinated Biphenyls and Trace Metals in Sediments from a Coastal Lagoon (Northern Adriatic, Italy) Texto completo
2012
Guerra, Roberta
Surface sediments (0–5 cm) were analysed to provide information on levels, spatial trends and sources of the 16 USEPA polycyclic aromatic hydrocarbons (PAH), 15 polychlorinated biphenyls (PCBs) and trace metals (copper, chromium, mercury, nickel and zinc) in channel and wetland habitats of Pialassa Baiona lagoon (Italy). The highest levels of PAHs, PCBs and Hg (3,032–87,150, n.d.–3,908 and 1.3–191 mg kg−1) were mainly found at channel habitats close to industrial sources. Pyrogenic PAH inputs were significant, with a predominance of four-ring PAHs and combustion-related PAHs in both channel and wetland habitats. Among PCB congeners, chlorination class profiles show that penta- and hexachlorinated PCBs are the most prevalent homologues accounting for approximately 33% and 47% of the total PCB concentrations in channel sediments. Total toxicity equivalent factors (TEQs) of potentially carcinogenic PAHs varied from 348 to 7,879 μg kg−1 and from 4.3 to 235 μg kg−1 in channel and wetland sediments; calculated TEQs for dioxin-like PCB congeners at channel habitats ranged from n.d. to 86.7 μg kg−1. Comparison of PAHs, PCBs and metal levels with Sediment Quality Guidelines suggests that more concern should be given to the southern area of the lagoon for potential risks of carcinogenic PAHs, dioxin-like PCBs and mercury.
Mostrar más [+] Menos [-]Experimental Investigation and Artificial Neural Network-Based Modeling of Batch Reduction of Hexavalent Chromium by Immobilized Cells of Newly Isolated Strain of Chromium-Resistant Bacteria Texto completo
2012
Shetty K., Vidya | L., Namitha | Rao, Shama N. | M., Narayani
The batch bioreduction of Cr(VI) by the cells of newly isolated chromium-resistant Acinetobacter sp. bacteria, immobilized on glass beads and Ca-alginate beads, was investigated. The rate of reduction and percentage reduction of Cr(VI) decrease with the increase in initial Cr(VI) concentration, indicating the inhibitory effect of Cr(VI). Efficiency of bioreduction can be improved by increasing the bioparticle loading or the initial biomass loading. Glass bioparticles have shown better performance as compared to Ca-alginate bioparticles in terms of batch Cr(VI) reduction achieved and the rate of reduction. Glass beads may be considered as better cell carrier particles for immobilization as compared to Ca-alginate beads. Around 90% reduction of 80Â ppm Cr(VI) could be achieved after 24Â h with initial biomass loading of 14.6Â mg on glass beads. Artificial neural network-based models are developed for prediction of batch Cr(VI) bioreduction using the cells immobilized on glass and Ca-alginate beads.
Mostrar más [+] Menos [-]