Refinar búsqueda
Resultados 941-950 de 4,308
Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen Texto completo
2017
Zou, Xiaoyan | Li, Penghui | Lou, Jie | Fu, Xiaoyan | Zhang, Hongwu
Silver nanoparticles (AgNPs) are increasingly used in various commercial products. This increased use raises ecological concerns because of the large release of AgNPs into the environment. Once released, the local water chemistry has the potential to influence the environmental fates and behaviors of AgNPs. The impacts of dissolved oxygen and natural organic matter (NOM) on the dissolution and stability of AgNPs were investigated in synthetic and natural freshwaters for 7 days. In synthetic freshwater, the aggregation of AgNPs occurred due to the compression of the electric double layer, accompanied by the dissolution of AgNPs. However, once oxygen was removed, the highest dissolved Ag (Agdis) concentration decreased from 356.5 μg/L to 272.1 μg/L, the pH of the AgNP suspensions increased from less than 7.6 to more than 8.4, and AgNPs were regenerated by the reduction of released Ag+ by citrate. The addition of NOM mitigated aggregation, inhibited oxidative dissolution and induced the transformation of AgNPs into Ag2S due to the formation of NOM-adsorbed layers, the reduction of Ag+ by NOM, and the high affinity of sulfur-enriched species in NOM for Ag. Likewise, in oxygen-depleted natural freshwaters, the inhibition of oxidative dissolution was obtained in comparison with oxygenated freshwaters, showing a decrease in the maximum Agdis concentration from 137.6 and 57.0 μg/L to 83.3 and 42.4 μg/L from two natural freshwater sites. Our results suggested that aggregation and dissolution of AgNPs in aquatic environments depend on the chemical composition, where oxygen-depleted freshwaters more significantly increase the colloidal stability. In comparison with oxic conditions, anoxic conditions were more favorable to the regeneration of AgNPs by reducing species (e.g., citrate and NOM) and enhanced the stability of nanoparticles. This indicates that some AgNPs will be more stable for long periods in oxygen-deprived freshwaters, and pose more serious environmental risks than that in oxygenated freshwaters.
Mostrar más [+] Menos [-]PM2.5 in the Yangtze River Delta, China: Chemical compositions, seasonal variations, and regional pollution events Texto completo
2017
Ming, Lili | Jin, Ling | Li, Jun | Fu, Pingqing | Yang, Wenyi | Liu, Di | Zhang, Gan | Wang, Zifa | Li, Xiangdong
Fine particle (PM2.5) samples were collected simultaneously at three urban sites (Shanghai, Nanjing, and Hangzhou) and one rural site near Ningbo in the Yangtze River Delta (YRD) region, China, on a weekly basis from September 2013 to August 2014. In addition, high-frequency daily sampling was conducted in Shanghai and Nanjing for one month during each season. Severe regional PM2.5 pollution episodes were frequently observed in the YRD, with annual mean concentrations of 94.6 ± 55.9, 97.8 ± 40.5, 134 ± 54.3, and 94.0 ± 57.6 μg m−3 in Shanghai, Nanjing, Hangzhou, and Ningbo, respectively. The concentrations of PM2.5 and ambient trace metals at the four sites showed clear seasonal trends, with higher concentrations in winter and lower concentrations in summer. In Shanghai, similar seasonal patterns were found for organic carbon (OC), elemental carbon (EC), and water-soluble inorganic ions (K+, NH4+, Cl−, NO3−, and SO42-). Air mass backward trajectory and potential source contribution function (PSCF) analyses implied that areas of central and northern China contributed significantly to the concentration and chemical compositions of PM2.5 in Shanghai during winter. Three heavy pollution events in Shanghai were observed during autumn and winter. The modelling results of the Nested Air Quality Prediction Modeling System (NAQPMS) showed the sources and transport of PM2.5 in the YRD during the three pollution processes. The contribution of secondary species (SOC, NH4+, NO3−, and SO42-) in pollution event (PE) periods was much higher than in BPE (before pollution event) and APE (after pollution event) periods, suggesting the importance of secondary aerosol formation during the three pollution events. Furthermore, the bioavailability of Cu, and Zn in the wintertime PM2.5 samples from Shanghai was much higher during the pollution days than during the non-pollution days.
Mostrar más [+] Menos [-]Hourly associations between heat and ambulance calls Texto completo
2017
Guo, Yuming
The response speed of ambulance calls is very crucial to rescue patients suffering immediately life threatening conditions. The serious health outcomes might be caused by exposing to extreme heat only several hours before. However, limited evidence is available on this topic. This study aims to examine the hourly association between heat and ambulance calls, to improve the ambulance services and to better protect health.Hourly data on ambulance calls for non-accidental causes, temperature and air pollutants (PM10, NO2, and O3) were collected from Brisbane, Australia, during 2001 and 2007. A time-stratified case-crossover design was used to examine the associations between hourly ambulance calls and temperature during warm season (Nov, Dec, Jan, Feb, and Mar), while adjusting for potential confounders. Stratified analyses were performed for sex and age groups.Ambulance calls peaked at 10am for all groups, except those aged <15 years at 19pm, while temperature was hottest at 13pm. The hourly heat-ambulance calls relationships were non-linear for all groups, with thresholds between 27 °C and 31 °C. The associations appeared immediately, and lasted for about 24 h. There were no significant modification effect by sex and age.The findings suggest that hot hourly temperatures (>27 °C) increase the demands of ambulance. This information is helpful to increase the efficiency of ambulance service then save lives, for example, preparing more ambulance before appearance of extremely hot temperature in combination with weather forecast. Also, people should better arrange their time for outdoor activities to avoid exposing to extreme hot temperatures.
Mostrar más [+] Menos [-]Nanotoxicity of graphene oxide: Assessing the influence of oxidation debris in the presence of humic acid Texto completo
2017
Clemente, Zaira | Castro, Vera Lúcia S.S. | Franqui, Lidiane S. | Silva, Cristiane A. | Martinez, Diego Stéfani T.
This study sought to evaluate the toxicological effects of graphene oxide (GO) through tests with Danio rerio (zebrafish) embryos, considering the influence of the base washing treatment and the interaction with natural organic matter (i.e., humic acid, HA). A commercial sample of GO was refluxed with NaOH to remove oxidation debris (OD) byproducts, which resulted in a base washed GO sample (bw-GO). This process decreased the total oxygenated groups in bw-GO and its stability in water compared to GO. When tested in the presence of HA, both GO and bw-GO stabilities were enhanced in water. Although the embryo exposure showed no acute toxicity or malformation, the larvae exposed to GO showed a reduction in their overall length and acetylcholinesterase activity. In the presence of HA, GO also inhibited acid phosphatase activity. Our findings indicate a mitigation of material toxicity after OD removal. The difference in the biological effects may be related to the materials’ bioavailability and biophysicochemical interactions. This study reports for the first time the critical influence of OD on the GO material biological reactivity and HA interaction, providing new data for nanomaterial environmental risk assessment and sustainable nanotechnology.
Mostrar más [+] Menos [-]A pilot study on the association between rare earth elements in maternal hair and the risk of neural tube defects in North China Texto completo
2017
Huo, Wenhua | Zhu, Yibing | Li, Zhenjiang | Pang, Yiming | Wang, Bin | Li, Zhiwen
Rare earth elements (REEs) have many applications in industry, agriculture, and medicine, resulting in occupational and environmental exposure and concerns regarding REE-associated health effects. However, few epidemiological studies have examined the adverse effects of REEs on pregnancy outcomes. Therefore, this study examined the relationship between the REE concentrations in maternal hair growing during early pregnancy and the risk of neural tube defects (NTDs) in offspring. We included 191 women with NTD-affected pregnancies (cases) and 261 women delivering healthy infants (controls). The cases were divided into three subtypes: anencephaly, spina bifida, and encephalocele. Four REEs in maternal hair were analyzed by inductively coupled plasma-mass spectrometry: lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd). A questionnaire was used to collect information about maternal sociodemographic characteristics and dietary habits. The median concentrations of Ce and Pr in the NTD group were higher than those in the control group, whereas there were no significant differences for La and Nd. The adjusted odds ratios (ORs) for the four REE concentrations above the median in the case groups were not significantly > 1. An increasing frequency of the consumption of beans or bean products and fresh fruit was negatively correlated with the four REE concentrations. Our results did not suggest that the concentrations of REEs in maternal hair were associated with the risk of NTDs or any subtype of NTDs in the general population.
Mostrar más [+] Menos [-]Novel use of field-portable-XRF for the direct analysis of trace elements in marine macroalgae Texto completo
2017
Bull, Annie | Brown, M. T. | Turner, Andrew
Samples of dried marine macroalgae (Fucus serratus, Palmaria palmata and Ulva lactuca) have been analysed for trace elements by a novel, non-destructive approach involving a Niton field-portable-X-ray fluorescence (FP-XRF) spectrometer configured in a low density plastics mode with thickness correction. Detection limits for a 200-s counting time ranged from <5 μg g⁻¹ for As and Pb in F. serratus and As in P. palmata to several tens of μg g⁻¹ for Cd, Sb and Sn in all species tested. Arsenic, Cu, Pb and Zn were detected by the XRF in samples collected from a protected beach (n = 18) and in samples therefrom that had been exposed to additional aqueous elements in combination (n = 72) with concentrations returned (in μg g⁻¹) ranging from 3.9 to 39.7 for As, 13.0 to 307 for Cu, 6.1 to 14.7 for Pb and 12.5 to 522 for Zn. Independent measurements of trace elements in the macroalgae by ICP-MS following nitric acid digestion revealed a direct and significant proportionality with concentrations returned by the XRF, with slopes of the XRF-ICP relationships (As = 1.0; Cu = 2.3; Pb = 2.4; Zn = 1.7) that can be used to calibrate the instrument for direct measurements. The approach shows potential for the in situ monitoring of macroalgae in coastal regions that is currently being investigated.
Mostrar más [+] Menos [-]A multi-metal risk assessment strategy for natural freshwater ecosystems based on the additive inhibitory free metal ion concentration index Texto completo
2017
Alves, Cristina M. | Ferreira, Carlos M.H. | Soares, Eduardo V. | Soares, Helena M.V.M.
Scientifically sound risk assessment strategies and derivations of environmental quality standards for metals present in freshwater environments are currently hampered by insufficient chronic toxicity data collected from natural ecosystems, as well as inadequate information on metal speciation. Thus, the aim of the present study was to evaluate the impact of freshwater containing multiple metals (Cd, Cr, Cu, Ni, Pb and Zn) on the chronic toxicity (72h) to the alga Pseudokirchneriella subcapitata and compare the observed toxicity results to the total and free metal concentration of the samples. Based on the information obtained herein, an additive inhibitory free multi-metal ion concentration index, calculated as the sum of the equivalent toxicities to the free metal ion concentration of each sample, was developed. The proposed index was well correlated to the observed chronic toxicity results, indicating that the concentration addition, when expressed as the free-ion activity, can be considered a reliable indicator for the evaluation of ecological risk assessments for natural waters containing multiple metals.
Mostrar más [+] Menos [-]A probabilistic approach to assess antibiotic resistance development risks in environmental compartments and its application to an intensive aquaculture production scenario Texto completo
2017
Rico, Andreu | Jacobs, R. (Rianne) | Van den Brink, Paul J. | Tello, Alfredo
Estimating antibiotic pollution and antibiotic resistance development risks in environmental compartments is important to design management strategies that advance our stewardship of antibiotics. In this study we propose a modelling approach to estimate the risk of antibiotic resistance development in environmental compartments and demonstrate its application in aquaculture production systems. We modelled exposure concentrations for 12 antibiotics used in Vietnamese Pangasius catfish production using the ERA-AQUA model. Minimum selective concentration (MSC) distributions that characterize the selective pressure of antibiotics on bacterial communities were derived from the European Committee on Antimicrobial Susceptibility Testing (EUCAST) Minimum Inhibitory Concentration dataset. The antibiotic resistance development risk (RDR) for each antibiotic was calculated as the probability that the antibiotic exposure distribution exceeds the MSC distribution representing the bacterial community. RDRs in pond sediments were nearly 100% for all antibiotics. Median RDR values in pond water were high for the majority of the antibiotics, with rifampicin, levofloxacin and ampicillin having highest values. In the effluent mixing area, RDRs were low for most antibiotics, with the exception of amoxicillin, ampicillin and trimethoprim, which presented moderate risks, and rifampicin and levofloxacin, which presented high risks. The RDR provides an efficient means to benchmark multiple antibiotics and treatment regimes in the initial phase of a risk assessment with regards to their potential to develop resistance in different environmental compartments, and can be used to derive resistance threshold concentrations.
Mostrar más [+] Menos [-]Enantiomeric profiling of a chemically diverse mixture of chiral pharmaceuticals in urban water Texto completo
2017
Evans, S. | Bagnall, J. | Kasprzyk-Hordern, B.
Due to concerns regarding the release of pharmaceuticals into the environment and the understudied impact of stereochemistry of pharmaceuticals on their fate and biological potency, we focussed in this paper on stereoselective transformation pathways of selected chiral pharmaceuticals (16 pairs) at both microcosm (receiving waters and activated sludge wastewater treatment simulating microcosms) and macrocosm (wastewater treatment plant (WWTP) utilising activated sludge technology and receiving waters) scales in order to test the hypothesis that biodegradation of chiral drugs is stereoselective. Our monitoring programme of a full scale activated sludge WWTP and receiving environment revealed that several chiral drugs, those being marketed mostly as racemates, are present in wastewater and receiving waters enriched with one enantiomeric form (e.g. fluoxetine, mirtazapine, salbutamol, MDMA). This is most likely due to biological metabolic processes occurring in humans and other organisms. Both activated sludge and receiving waters simulating microcosms confirmed our hypothesis that chiral drugs are subject to stereoselective microbial degradation. It led, in this research, to preferential degradation of S-(+)-enantiomers of amphetamines, R-(+)-enantiomers of beta-blockers and S-(+)-enantiomers of antidepressants. In the case of three parent compound – metabolite pairs (venlafaxine – desmethylvenlafaxine, citalopram – desmethylcitalopram and MDMA - MDA), while parent compounds showed higher resistance to both microbial metabolism and photodegradation, their desmethyl metabolites showed much higher degradation rate both in terms of stereoselective metabolic and non-stereoselective photochemical processes. It is also worth noting that metabolites tend to be, as expected, enriched with enantiomers of opposite configuration to their parent compounds, which might have significant toxicological consequences when evaluating the metabolic residues of chiral pollutants.
Mostrar más [+] Menos [-]Air–sea exchange and gas–particle partitioning of polycyclic aromatic hydrocarbons over the northwestern Pacific Ocean: Role of East Asian continental outflow Texto completo
2017
Wu, Zilan | Lin, Tian | Li, Zhongxia | Jiang, Yuqing | Li, Yuanyuan | Yao, Xiaohong | Gao, Huiwang | Guo, Zhigang
We measured 15 parent polycyclic aromatic hydrocarbons (PAHs) in atmosphere and water during a research cruise from the East China Sea (ECS) to the northwestern Pacific Ocean (NWP) in the spring of 2015 to investigate the occurrence, air–sea gas exchange, and gas–particle partitioning of PAHs with a particular focus on the influence of East Asian continental outflow. The gaseous PAH composition and identification of sources were consistent with PAHs from the upwind area, indicating that the gaseous PAHs (three-to five-ring PAHs) were influenced by upwind land pollution. In addition, air–sea exchange fluxes of gaseous PAHs were estimated to be −54.2–107.4 ng m−2 d−1, and was indicative of variations of land-based PAH inputs. The logarithmic gas–particle partition coefficient (logKp) of PAHs regressed linearly against the logarithmic subcooled liquid vapor pressure (logPL0), with a slope of −0.25. This was significantly larger than the theoretical value (−1), implying disequilibrium between the gaseous and particulate PAHs over the NWP. The non-equilibrium of PAH gas–particle partitioning was shielded from the volatilization of three-ring gaseous PAHs from seawater and lower soot concentrations in particular when the oceanic air masses prevailed. Modeling PAH absorption into organic matter and adsorption onto soot carbon revealed that the status of PAH gas–particle partitioning deviated more from the modeling Kp for oceanic air masses than those for continental air masses, which coincided with higher volatilization of three-ring PAHs and confirmed the influence of air–sea exchange. Meanwhile, significant linear regressions between logKp and logKoa (logKsa) for PAHs were observed for continental air masses, suggesting the dominant effect of East Asian continental outflow on atmospheric PAHs over the NWP during the sampling campaign.
Mostrar más [+] Menos [-]