Refinar búsqueda
Resultados 941-950 de 7,921
Continuous increases of surface ozone and associated premature mortality growth in China during 2015–2019
2021
Maji, Kamal Jyoti | Namdeo, Anil
Ambient ozone (O₃) pollution has become a big issue in China. Recent studies have linked long- and short-term O₃ exposure to several public health risks. In this study, we (1) characterize the long-term and short-term O₃-attributed health metric in China from 2015 to 2019; (2) estimate the surface O₃ trends; and (3) quantify the long-term and short-term health impacts (i.e. all-cause, cardiovascular and respiratory mortality) in 350 urban Chinese cities. In these 5-years, the national annual average of daily maximum 8 h average (AVGDMA8) O₃ concentrations and warm-season (April–September) 4th highest daily maximum 8 h average (4DMA8) O₃ concentrations increased from 74.0 ± 15.5 μg/m³ (mean ± standard deviation) to 82.3 ± 12.0 μg/m³ and 167 ± 37.0 μg/m³ to 174 ± 30.0 μg/m³ respectively. During this period, the DMA8 O₃ concentration increased by 1.9 ± 3.3 μg/m³/yr across China, with over 70% of the monitoring sites showing a positive upward trend and 19.4% with trends >5 μg/m³/yr. The estimated long-term all-cause, cardiovascular and respiratory premature mortalities attributable to AVGDMA8 O₃ exposure in 350 Chinese cities were 181,000 (95% CI: 91,500–352,000), 112,000 (95% CI: 38,100–214,000) and 33,800 (95% CI: 0–71,400) in 2019, showing increases of 52.5%, 52.9% and 54.6% respectively compared to 2015 levels. Similarly, short-term all-cause, cardiovascular and respiratory premature mortalities attributed to ambient 4DMA8 O₃ exposure were 156,000 (95% CI: 85,300–227,000), 73,500 (95% CI: 27,500–119,000) and 28,600 (95% CI: 14,500–42,800) in 2019, increases of 19.6%, 19.8% and 21.2% respectively compared to 2015. The results of this study are important in ascertaining the effectiveness of recent emission control measures and to identify the areas that require urgent attention.
Mostrar más [+] Menos [-]Cadmium speciation and release kinetics in a paddy soil as affected by soil amendments and flooding-draining cycle
2021
Yan, Jiali | Fischel, Matthew | Chen, Hongping | Siebecker, Matthew G. | Wang, Peng | Zhao, Fang-Jie | Sparks, Donald L.
Cadmium bioavailability in paddy soils is strongly affected by flooding-draining cycle. In this study, we used synchrotron-based X-ray absorption spectroscopy and a stirred-flow method to investigate the effects of flooding-draining and amendments of CaCO₃ and CaSO₄ on Cd speciation and release kinetics from a Cd-spiked paddy soil (total Cd concentration of 165 mg kg⁻¹). Extended X-ray absorption fine structure analysis showed that Cd was predominantly bound to non-iron-clay minerals (e.g. Cd-kaolinite, Cd-illite, and Cd-montmorillonite, accounting for 60–100%) in the air-dried soil and 1- or 7-day flooded samples. After prolonged flooding (30 and 120 days), Cd-iron mineral complexes (e.g. Cd bound to ferrihydrite and goethite) became the predominant species (accounting for 52–100%). Stirred-flow kinetic analysis showed that both prolonged flooding and the amendments with CaCO₃ and CaSO₄ decreased the maximum amount and the rate coefficient of Cd release. However, the effect of prolonged flooding was reversed after a short period of draining, indicating that although Cd was immobilized during flooding, it became mobile rapidly after the soil was drained, possibly due to pH decrease and rapid oxidation of CdS. The effects of the amendments on Cd uptake in rice plants were tested in a pot experiment using the same paddy soil without Cd spiking (total Cd 2.1 mg kg⁻¹). Amendment with CaCO₃ and, to a lesser extent, CaSO₄, decreased the Cd accumulation in two cultivars of rice. The combination of CaCO₃ amendment and a low Cd accumulating cultivar was effective at limiting grain Cd concentration to below the 0.2 mg kg⁻¹ limit.
Mostrar más [+] Menos [-]Diazinon exposure produces histological damage, oxidative stress, immune disorders and gut microbiota dysbiosis in crucian carp (Carassius auratus gibelio)
2021
Tang, Jiali | Wang, Wenqian | Jiang, Yuanhe | Chu, Weihua
Diazinon is a common organophosphate pesticide widely used to control parasitic infections in agriculture. Excessive use of diazinon can have adverse effects on the environment and aquatic animal health. In the present study, the toxic effects of diazinon on the histology, antioxidant, innate immune and intestinal microbiota community composition of crucian carp (Carassius auratus gibelio) were investigated. The results showed that diazinon at the tested concentration (300 μg/L) induced gill and liver histopathological damages. Hepatic total superoxide dismutase (T-SOD), catalase (CAT), and glutathione S-transferase (GST) activities significantly decreased (P < 0.05) by 32.47%, 65.33% and 37.34%, respectively. However, the liver tissue malondialdehyde (MDA) content significantly (P < 0.05) increased by 138.83%. The 300 μg/L diazinon significantly (P < 0.05) downregulated the gene expression of TLR4, MyD88, NF-kB p100 and IL-8 but had no significant effect TNF-α (P = 0.8239). In addition, the results demonstrated that diazinon exposure could affect the intestinal microbiota composition and diversity. Taken together, the results of this study indicated that diazinon exposure can cause damage to crucian carp, induce histopathological damage in gill and liver tissues, oxidative stress in the liver, and innate immune disorders and alter intestinal microbiota composition and diversity.
Mostrar más [+] Menos [-]Transformation of bacterial community structure in rumen liquid anaerobic digestion of rice straw
2021
Liang, Jinsong | Zheng, Wenge | Zhang, Haibo | Zhang, Panyue | Cai, Yajing | Wang, Qingyan | Zhou, Zeyan | Ding, Yiran
Rumen liquid can effectively degrade lignocellulosic biomass, in which rumen microorganisms play an important role. In this study, transformation of bacterial community structure in rumen liquid anaerobic digestion of rice straw was explored. Results showed that rice straw was efficiently hydrolyzed and acidified, and the degradation efficiency of cellulose, hemicellulose and lignin reached 46.2%, 60.4%, and 12.9%, respectively. The concentration of soluble chemical oxygen demand (SCOD) and total volatile fatty acid (VFA) reached 12.9 and 8.04 g L⁻¹. The high-throughput sequencing results showed that structure of rumen bacterial community significantly changed in anaerobic digestion. The Shannon diversity index showed that rumen bacterial diversity decreased by 32.8% on the 5th day of anaerobic digestion. The relative abundance of Prevotella and Fibrobacter significantly increased, while Ruminococcus significantly decreased at the genus level. The Spearman correlation heatmap showed that pH and VFA were the critical factors affecting the rumen bacterial community structure. The function prediction found that rumen bacteria mainly functioned in carbohydrate transport and metabolism, which might contain a large number of lignocellulose degrading enzyme genes. These studies are conducive to the better application of rumen microorganisms in the degradation of lignocellulosic biomass.
Mostrar más [+] Menos [-]A national cross-sectional study of exposure to outdoor nitrogen dioxide and aeroallergen sensitization in Australian children aged 7–11 years
2021
Tu, Yanhui | Williams, Gail M. | Cortés de Waterman, Adriana M. | Toelle, Brett G. | Guo, Yuming | Denison, Lyn | Babu, Giridhara R. | Yang, Bo-Yi | Dong, Guang-Hui | Jalaludin, Bin | Marks, Guy B. | Knibbs, Luke D.
The prevalence of allergic diseases in Australian children is high, but few studies have assessed the potential role of outdoor air pollution in allergic sensitization. We investigated the association between outdoor air pollution and the prevalence of aeroallergen sensitization in a national cross-sectional study of Australian children aged 7–11 years. Children were recruited from 55 participating schools in 12 Australian cities during 2007–2008. Parents completed a detailed (70-item) questionnaire. Outdoor nitrogen dioxide (NO₂), as a proxy for exposure to traffic-related emissions, was estimated using measurements from regulatory monitors near each school and a national land-use regression (LUR) model. Three averaging periods were assessed, using information on duration of residence at the address, including lifetime, previous (lifetime, excluding the last year), and recent (the last year only). The LUR model was used as an additional source of recent exposure estimates at school and home addresses. Skin prick tests (SPTs) were performed to measure sensitization to eight common aeroallergens. Multilevel logistic regression estimated the association between NO₂ and sensitization (by individual allergens, indoor and outdoor allergens, and all allergens combined), after adjustment for individual- and area-level covariates. In total, 2226 children had a completed questionnaire and SPT. The prevalence of sensitization to any allergen was 44.4%. Sensitization to house dust mites (HDMs) was the most common (36.1%), while sensitization to Aspergillus was the least common (3.4%). Measured mean (±s.d.) NO₂ exposure was between 9 (±2.9) ppb and 9.5 (±3.2) ppb, depending on the averaging period. An IQR (4 ppb) increase in measured previous NO₂ exposure was associated with greater odds of sensitization to HDMs (OR: 1.21, 95% CI: 1.01–1.43, P = 0.035). We found evidence of an association between relatively low outdoor NO₂ concentrations and sensitization to HDMs, but not other aeroallergens, in Australian children aged 7–11 years.
Mostrar más [+] Menos [-]Nutrient accumulation from excessive nutrient surplus caused by shifting from rice monoculture to rice–crayfish rotation
2021
Hou, Jun | Zhang, Dingyue | Zhu, Jianqiang
The potential environmental risk associated with nutrient surplus after switching from rice monoculture (RM) to rice–crayfish rotation (RCR) was assessed in the Jianghan Plains in China. Nutrient surplus was achieved by surveying 32 RM and 69 RCR and determining their nutrient inputs and outputs, and the soil nutrient status for different soil properties were recorded for 0–23 years. The annual average input of N, P₂O₅, and K₂O in RCR was 536, 185, and 253 kg ha⁻¹, respectively, wherein fertilizer and feed accounted for the major fraction of the total nutrient input. For instance, they accounted 58% and 18% of N, 74% and 24% of P₂O₅, and 70% and 30% of K₂O, respectively. The annual apparent surplus of N, P₂O₅, and K₂O was 397, 145, and 225 kg ha⁻¹, respectively, leading to low apparent nutrient use efficiency. Consequently, compared with RM, the total N and soil readily oxidized organic carbon in the upper soil surface (0–20 cm) for the RCR field significantly increased by 0.42–0.96 g kg⁻¹ and 1.63–3.19 g kg⁻¹, respectively. The available N, Olsen P, and exchangeable K of the RCR in the upper soil layer also increased significantly. In the RCR system, a significant positive linear relationship between the apparent accumulated nutrient surplus of N, P, and K elements and the total N, Olsen P, and exchangeable K present in the 0–60 cm soil profile was observed. In RCR, the soil pH in 0–60 cm soil profile and cation exchange capacity in the 0–20 cm soil layer increased as the cultivation time progressed. Nutrient accumulation in the soil not only enhanced soil fertility but also negatively influenced the environment. Therefore, several measures (e.g., new fertilization technologies, new fertilizer, legislation approaches for nutrient surplus, and technical training) should be adopted to control the nutrient surplus.
Mostrar más [+] Menos [-]Responses of rhizosphere bacterial communities, their functions and their network interactions to Cd stress under phytostabilization by Miscanthus spp
2021
Chen, Zhao-Jin | Tian, Wei | Li, Ying-Jun | Sun, Le-Ni | Chen, Yan | Zhang, Hao | Li, Yuying | Han, Hui
Miscanthus has good tolerance to heavy metals (HMs) and has received increasing attention in studies of HM-contaminated soil remediation. In this study, four Miscanthus cultivars (M. lutarioriparius Xiangnadi NO4, M. sinensis Xiangmang NO1, M. lutarioriparius × M. sinensis hybrid Xiangzamang NO1, and M. floridulus Wujiemang NO1) that grow in China were studied. Their tolerance and enrichment abilities in soils containing 50 mg kg⁻¹ cadmium (Cd) and the structure and function of their rhizosphere bacterial communities during the remediation process were analyzed. The results exhibiting a tolerance index (TI) higher than 75 in roots and the aboveground parts (TI > 60, indicating highly tolerant plants) indicated that all four Miscanthus cultivars were tolerant to high Cd concentrations. Moreover, Cd was mainly enriched in roots, the translocation ability from roots to aboveground parts was weak, and the four cultivars exhibited phytostabilization ability in Cd-contaminated soils. High-throughput sequencing (HTS) analysis showed that the Miscanthus rhizosphere bacterial community comprised 33 phyla and 446 genera, including plant growth-promoting rhizobacteria (PGPRs), such as Bacillus, Sphingomonas, and Mesorhizobium. The addition of Cd affected the Miscanthus rhizosphere bacterial community and reduced community diversity. Phylogenetic molecular ecological networks (pMENs) indicated that Cd addition reduced interactions between Miscanthus rhizosphere bacteria and thereby led to a simpler network structure, increased the number of negative-correlation links, enhanced the competition between rhizosphere bacterial species, reduced the number of key bacteria, and changed the composition of those bacteria. PICRUSt functional predictive analysis indicated that Cd stress reduced soil bacterial functions in the Miscanthus rhizosphere. The results of this study provide a basis for the remediation of Cd-contaminated soils by Miscanthus and provide a reference for the subsequent regulation of Miscanthus remediation efficiency by PGPRs or key bacteria.
Mostrar más [+] Menos [-]Challenges in microbially and chelate-assisted phytoextraction of cadmium and lead – A review
2021
Gul, Iram | Manzoor, Maria | Hashim, Nosheen | Shah, Ghulam Mujtaba | Waani, Sayyada Phziya Tariq | Shāhid, Muḥammad | Antoniadis, Vasileios | Rinklebe, Jörg | Arshad, Muḥammad
Cadmium (Cd) and lead (Pb) are ubiquitously present in surface soils, due to anthropogenic activities, causing threat to ecological and human health because of their carcinogenic nature. They accumulate in large quantities in the environment and affect negatively soil microbiota, plants, animals, and humans. For the cleanup of Cd/Pb polluted soils, different plant species have been studied. Many plants have shown the potential to hyperaccumulate Cd/Pb in their above-ground tissues. These plants decrease soil pH by root exudation or by releasing H⁺ ions, and this, in turn, increases the bioavailability of Cd/Pb for plant uptake. Different environmental processes related to soil organic matter, microorganisms, pH, genetic modifications, and various soil-borne chelating agents affect the potential of phytoremediation technology. Review papers trying to identify a single factor influencing the phytoremediation of heavy metals are available in the literature. However, an integrated approach dealing with different factors involved in the remediation of both metals is scarcely discussed. The main focus of this review is to discuss the phytoextraction technique for Cd/Pb removal from contaminated sites along with detoxification mechanisms. Further, the challenges in the Cd/Pb phytoextraction and different options available to cope with these challenges are also discussed. The update on the relevant findings on the use of microorganisms and amendments in enhancing the Cd/Pb phytoextraction is also provided. Finally, the areas to be explored in future research for the removal of Cd/Pb by integrated strategies have been discussed.
Mostrar más [+] Menos [-]Sustainable stabilization/solidification of the Pb, Zn, and Cd contaminated soil by red mud-derived binders
2021
Wang, Fei | Xu, Jian | Yin, Hailong | Zhang, Yunhui | Pan, Hao | Wang, Lei
Red mud and phosphogypsum are voluminous industrial by-products worldwide. They have long been disposed of in landfills or open storage, leading to a waste of resource and environmental pollution. This study provides a novel approach to recycle these industrial by-products as sustainable red mud-phosphogypsum-Portland cement (RPPC) binders for stabilization/solidification (S/S) of multimetal-contaminated soil. The physical strength, metal leachability and microstructure of S/S soil were investigated after 7-day and 28-day curing, as well as freezing-thawing (F-T) cycle and wetting-drying (W-D) cycle. The results show that the strength of soil treated by all binders fulfilled the uniaxial compressive strength requirement (350 kPa) of S/S waste in landfills. Microstructural analyses show that the main hydration products of the RPPC S/S soil are ilmenite, ettringite, anhydrite and hydrated calcium silicate. The 10% and 15% RPPC binders have a competitive metal immobilization ability compared with 10% PC, but the immobilization priority is different: Pb > Zn > Cd in RPPC system and Zn > Cd > Pb in PC system, respectively, probably due to the precipiataion of Pb²⁺ with the abundant SO₄²⁻ in phosphogypsum in RPPC system. The strength of RPPC and PC treated soil was still higher than 350 kPa except for RPPC7.5 after 10 freeze-thaw or 10 wetting-drying cycles. The RPPC binder performed worse than PC binder after both freeze-thaw and wetting-drying cycles, especially at a lower dosage. Only the metal leaching concentrations of samples treated by RPPC15 and PC10 could fulfil the Chinese standards for hazardous wastes.
Mostrar más [+] Menos [-]Improving source inversion performance of airborne pollutant emissions by modifying atmospheric dispersion scheme through sensitivity analysis combined with optimization model
2021
Mao, Shushuai | Lang, Jianlei | Chen, Tian | Cheng, Shuiyuan
Estimating accurately airborne pollutant emissions source information (source strength and location) is important for achieving effective air pollution management or adequate emergency responses to accidents. Inversion method is one of the useful tools to identify the source parameters. The atmospheric dispersion scheme has been proven to be the key to determining the source inversion performance by influencing the accuracy of the dispersion models. Modifying the atmospheric dispersion scheme is an important potential method to improve the inversion performance, but this has not been studied previously. To fill this gap, a novel approach for parameter sensitivity analysis combined with an optimization method was proposed to improve the source inversion performance by optimizing empirical scheme. The dispersion coefficients σy and σz of the typical BRIGGS scheme under different atmospheric dispersion conditions were optimized and used for air pollutant dispersion and source inversion. The results showed that the prediction performance of the air pollutant concentrations was greatly improved with statistical indices |FB| and NMSE decreased by 0.22 and 2.07, respectively; FAC2 and R increased by 0.10, and 0.08, respectively. For source inversion, the results of the significance analysis suggested that the accuracy in the source strength and location parameter (x0) were both significantly improved by ∼271% (relative deviation reduced from 60.0% to 16.2%) and ∼121% (absolute deviation reduced from 27.6 to 12.5 m). The improvement of source strength inversion accuracy was more significant under unstable atmospheric conditions (stability class A, B, and C); the mean absolute relative deviation was reduced by 97.5%. These results can help to obtain more accurate source information and to provide reliable reference for air pollution managements or emergency response to accidents. This study provides a novel and versatile approach to improve estimation performance of pollutant emission sources and enhances our understanding of source inversion.
Mostrar más [+] Menos [-]