Refinar búsqueda
Resultados 971-980 de 1,546
Culture-Dependent and Culture-Independent Methods in Evaluation of Emission of Enterobacteriaceae from Sewage to the Air and Surface Water Texto completo
2012
Korzeniewska, Ewa | Harnisz, Monika
The number of Enterobacteriaceae, with particular attention given to the presence of Escherichia coli and Klebsiella pneumoniae, was determined in hospital effluents and municipal wastewater after various stages of purification. The emission of these microorganisms to the ambient air near wastewater treatment plant (WWTP) facilities and to the river water, which is a receiver of the WWTP effluent, was also studied using fluorescence in situ hybridization (FISH) and cultivation methods. The number of Enterobacteriaceae determined by cultivation and fluorescence methods in different kinds of sewage sample ranged from 0.5 × 10³ to 2.9 × 10⁶ CFU/ml and from 2.2 × 10⁵ to 1.3 × 10⁸ cells/ml, respectively. Their removal rates during treatment processes were close to 99 %, but the number of these bacteria in the WWTP outflow was quite high and ranged from 5.9 × 10³ to 3.5 × 10⁴ CFU/ml and from 1.1 × 10⁵ to 6.1 × 10⁵ cells/ml, respectively. In the river water and the air samples, the number of Enterobacteriaceae was also high and ranged from 4.1 × 10³ to 7.9 × 10³ CFU/ml and from 3 to 458 CFU/m³, respectively. The numbers of these microorganisms obtained from fluorescence and cultivation methods were statistically and significantly correlated; however, the analysis of the studied samples indicated that the FISH method gave values up to 10³-fold times greater than those obtained by the cultivation method. From a sanitary point of view, this means that the number of viable fecal bacteria is systematically underestimated by traditional culture-based methods. Thus, the FISH proves to be a method that could be used to estimate bacterial load, particularly in air samples and less contaminated river water.
Mostrar más [+] Menos [-]Substance Flow Analysis of Mercury Affecting Water Quality in the European Union Texto completo
2012
Sundseth, Kyrre | Pacyna, Jozef M. | Pacyna, Elisabeth G. | Panasiuk, Damian
Knowledge concerning the main flows of priority substances (PSs) and the production systems and consumption structures in the society causing these flows is a prerequisite for any attempt to predict and understand their environmental fate as well as to efficiently minimize future environmental burdens. In this paper, a simple SFA diagram on mercury, including the main European Union (EU-27) source categories, flows and environmental endpoints which in turn affect the mercury concentrations in the EU-27 waters are illustrated. From trend analysis and future projections, it becomes obvious that emissions of mercury as a trace contaminant in fuels and minerals (primary anthropogenic emission sources) are becoming increasingly important to the environmental concentrations compared to emissions from mercury used intentionally (secondary anthropogenic sources). Additional future control strategies should therefore be targeted industrial sources and safe treatment of mercury-containing wastes, wastewater effluents, as well as residues collected from various combustion processes. It was found that knowledge on flows and emission sources on a large geographical scale is limited due to a lack of information on emission factors from various industrial processes and waste systems, especially for the mercury being discharges to water and land.
Mostrar más [+] Menos [-]Electrochemical Degradation of a Real Pharmaceutical Effluent Texto completo
2012
Domínguez, Joaquín R. | González, Tomás | Palo, P. | Sánchez-Martín, J. | Rodrigo, M. A. | Sáez, C.
In this work, the electrochemical treatment of an effluent from the pharmaceutical industry with boron-doped diamond electrodes was investigated. The electrolyses were carried out in a discontinuous operation mode under galvanostatic conditions, using a bench-scale plant equipped with a single-compartment electrochemical flow cell. The effect of operating conditions, such as current density (from 25.7 to 179.4 mA cm2) and flow rate (from 104.8 to 564.7 cm3 min−1), at residence times between 0 and 570 min, was studied. Design of experiments was used for optimizing the process. The global contribution of operative parameters and evolution of the residence time in TOC removal was studied, and a time of 77 min was obtained in order to evaluate the highest influence of the operative parameters. For this time, ANOVA test reported significance for four of the five involved variables. The current density was found to have a considerable positive effect on TOC removal, whereas the flow rate was found to have a moderate negative effect on target variable.
Mostrar más [+] Menos [-]Atmospheric Mercury Fluxes in a Southern Boreal Forest and Wetland Texto completo
2012
Kyllönen, Katriina | Hakola, Hannele | Hellén, Heidi | Korhonen, Markku | Verta, Matti
Total gaseous mercury (TGM) fluxes from the forest floor and a boreal wetland were measured by a flux chamber technique coupled with an automatic mercury vapour analyser. The fluxes were measured at three sampling sites in southern Finland, 61°14′ N, 25°04′ E in summer 2007, with additionally in situ TGM concentrations in the air at one of the sites and mercury bulk deposition at another. Most of the flux data were collected during the daytime. At one of the sites, diurnal flux behaviour was studied, and a clear cycle with an afternoon maximum and a night minimum was observed. The highest emissions (up to 3.5 ng m−2 h−1) were observed at the forest floor site having a moss and grass cover. At the wetland and litter-rich forest floor sites, the emissions were below 1 ng m−2 h−1 and sometimes negative (down to −1.0 ng m−2 h−1), indicating mercury uptake. The measured average fluxes in August were 0.9 ± 1.1 and 0.2 ± 0.3 ng m−2 h−1 for the forest floor sites and wetland sites, respectively. The flux data were compared with the mercury bulk deposition, which proved to be of the same magnitude, but opposite in sign. At the mossy forest floor site, the extrapolated TGM emissions were 130% of the Hg deposition in August 2007. Comparison with other studies showed that the fluxes in background areas are relatively uniform, regardless of measurement site location and method used. Airborne TGM remained at the background level during the study, with an average value of 1.3 ± 0.2 ng m−3; it frequently showed a diurnal cycle pattern.
Mostrar más [+] Menos [-]Redox Stratification and Salinization of Three Kettle Lakes in Southwest Michigan, USA Texto completo
2012
Koretsky, Carla M. | MacLeod, Andrew | Sibert, Ryan J. | Snyder, Christine
Redox stratification, especially hypolimnetic anoxia resulting from eutrophication, and salinization resulting from application of salts for road deicing is investigated in three kettle lakes in southwest Michigan. Two of the lakes (Asylum and Woods Lakes) are located in urban Kalamazoo, Michigan, and the third (Brewster Lake) is located in rural Hastings, Michigan. In summer, the water columns of all three lakes are distinctly redox stratified, with anoxic hypolimnia and significant accumulation of reduced solutes (e.g., Mn(II), Fe(II), ammonia) in the lake bottom waters. Extremely elevated conductivity, chloride, sodium, and potassium levels are observed in the urban Asylum and Woods Lakes compared to the rural Brewster Lake, presumably due to runoff of road salt deicers applied in the surrounding watershed. These significant changes in water quality are of concern because they may detrimentally impact lake mixing, biodiversity, and ecosystem function in the urban lakes.
Mostrar más [+] Menos [-]TiO₂ Immobilized Biodegradable Polymer for Photocatalytic Removal of Chlorophenol Texto completo
2012
Sivlim, Tuğba | Akkan, Şenay | Altın, İlknur | Koc, Melek | Sökmen, Münevver
This study concentrated on the direct immobilization of anatase nano titanium dioxide particles (TiO₂, 44 nm particle size) into or onto a biodegradable polymer, polycaprolactone, by solvent-cast processes. The photocatalytic properties of the produced materials were tested by photocatalytic removal of organic contaminant 4-chlorophenol. Produced TiO₂ immobilized polymer successfully removed 4-chlorophenol (4-CP, 20 ppm which is equal to 1.56 × 10⁻⁴ M) from aqueous solution without additional pH arrangement employing a UV-A light (365 nm) source. Immobilization of n-TiO₂ onto polycaprolactone (PCL) produced improved 4-CP removal percentages, reaching to nearly 85 %. Increased PCL mass significantly increases the removal percentage of 4-CP. When a UVC lamp emitting 254 nm light is used, the removal percentage reaches to 89 %. UV irradiation did not cause any change in the microstructure of the polymeric material (confirmed with ATR-FTIR analysis). This is an important evidence that the material could be reused for further photocatalytic treatments. Produced material seems to be highly promising for successful removal of organic pollutants beside its biodegradable nature.
Mostrar más [+] Menos [-]Energy Basal Levels and Allocation among Lipids, Proteins, and Carbohydrates in Enchytraeus albidus: Changes Related to Exposure to Cu Salt and Cu Nanoparticles Texto completo
2012
Amorim, Mónica J. B. | Gomes, Susana I. L. | Soares, Amadeu M. V. M. | Scott-Fordsmand, Janeck J.
Energy intake and allocation are mainly used to maintain body functions, such as locomotion, growth, and reproductive output. It has been observed that environmental pollutants can affect the energy allocation either due to a cost of handling toxicants or because the toxicant interacts with the storage processes within the organisms. Less than a handful of studies are available reporting the effect of toxicants on energy reserves in enchytraeids and no studies have dealt with the influence of nanomaterials. The present paper shows results on the basal energy reserves (lipids, carbohydrates, and proteins) in Enchytraeus albidus and the influence of copper (Cu) salt and Cu nanoparticles on these reserves for two exposure durations. The energy allocation levels follow what has been reported for other worm species, although lower carbohydrate levels were observed. There were clear differences between worms exposed to control soils and those exposed to Cu for 3Â weeks, but no difference after 6 weeks exposure. There was no apparent difference between the impacts of the two Cu exposure forms.
Mostrar más [+] Menos [-]Advanced Oxidation Processes in Triton X-100 and Wash-up Liquid Removal from Wastewater Using Modified TiO₂/Al ₂O ₃ Photocatalysts Texto completo
2012
Czech, Bożena | Ćwikła-Bundyra, Wiesława
Photocatalytic methods were applied to remove the recalcitrant or toxic pollutants from the water. The two models of wastewater containing either non-ionic surfactant Triton X-100 or commercially available wash-up liquid were tested in a self-constructed band reactor during the laboratory studies. The photocatalyst, being typed TiO₂, was supported by porous Al₂O₃ and modified by the addition of Cu, Fe, Zn, Ni, Mo or Co. The photocatalysts were characterised by N₂ adsorption–desorption, XRF, XRD, SEM-EDX, Raman and UV–Vis spectroscopy. All catalysts were efficient in the photocatalytic oxidation of surfactants, and they enabled at least 85 % COD reduction. TiO₂/Al₂O₃ photocatalysts modified by the transition metals were efficient only for more complicated compositions of surfactants. The effect of H₂O₂ (0.01 vol.%) addition was also examined and compared with a type of compound and catalyst used—in this case a positive effect for Triton X-100 was only observed over the photocatalyst modified by Ni. When it comes to the wash-up liquid photoremoval, all studied photocatalysts seem to be slightly influenced by H₂O₂ addition. It was also observed that it is not economically justified to conduct such treatment for more than 2 h.
Mostrar más [+] Menos [-]Inhibition Kinetics of Ammonia Oxidation Influenced by Silver Nanoparticles Texto completo
2012
Giao, Nguyen Thanh | Limpiyakorn, Tawan | Siripattanakul-Ratpukdi, Sumana
Silver nanoparticles (AgNPs) have significantly increased in production and use for anti-microbial propose. This agent, after used, is released into sewerage system resulting in possibility to inactivate non-targeted microorganisms in wastewater treatment plants. In this study, the inhibitory effect of AgNPs on ammonia oxidation was investigated using respirometric assay. The initial concentrations of AgNPs and ammonia ranged 0.25–10.00 and 14–280 mg/L, respectively. Half saturation constant (K ₛ) for ammonia oxidation was found to be 15.9 mg N/L. Under the presence of AgNPs, the maximum oxygen uptake rate and K ₛ declined. The effect of AgNPs was proved to follow an uncompetitive-like inhibition kinetic type with the inhibition coefficients (K ᵢ) of 5.5 mg/L. Increasing AgNPs from 0.25 to 10.00 mg/L inhibited 4 to 50 % of ammonia-oxidizing activities at the initial ammonia concentrations from 14 to 280 mg/L. Based on transmission electron microscopic observation, AgNPs could damage the microbial cells. All findings indicated that AgNPs substantially reduced ammonia-oxidizing microorganisms and their activities. Thus, special attention should be made to manage discharge of AgNPs into the environment.
Mostrar más [+] Menos [-]Using Pyrolyzed Rice Husks as an Adsorbent for Purification of Water Basins Polluted with Diesel Fuel Texto completo
2012
Dimitrov, Aleksandar | Genieva, Svetlana | Petkov, Petko | Vlaev, Lyubomir
Black rice husk ash (BRHA) was obtained by means of thermal degradation of raw rice husks (RRH) on a pilot plant fluidized bed reactor. BRHA was characterized using chemical analyses, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and thermal analysis. The kinetics was studied using batch adsorption technique and on the basis of prior characterization by X-ray diffraction patterns and scanning electron microscopy. The adsorption capacities of diesel fuel at 288, 293 and 298Â K onto BRHA were determined. Results showed that the material studied has very high adsorption capacity and low cost and may successfully be used as an effective adsorbent to clean up spills of oil products in water basins. The adsorption of diesel fuel onto BRHA proceeds rapidly to reach adsorption equilibrium in about 10Â min. The saturated BRHA can be burnt in incinerators, industrial ovens or steam generators, and through this way ecological and economic benefits are attained.
Mostrar más [+] Menos [-]