Refinar búsqueda
Resultados 981-990 de 1,955
The use of Leaf Characteristics of Common Oak (Quercus Robur L.) to Monitor Ambient Ammonia Concentrations Texto completo
2013
Wuytack, Tatiana | Verheyen, Kris | Wuyts, Karen | Adriaenssens, Sandy | Staelens, Jeroen | Samson, Roeland
Biomonitoring of atmospheric ammonia (NH₃) concentrations is generally performed with epiphytic lichens, using species’ abundances and/or nitrogen concentration as monitoring tools. However, the potential of leaf characteristics of trees to monitor the atmospheric NH₃ concentration has remained largely unexplored. Therefore, we performed a passive biomonitoring study with common oak (Quercus robur L.) at 34 sampling locations in the near vicinity of livestock farms, located in Flanders (northern Belgium). We aimed at evaluating the potential of specific leaf area, leaf area fluctuating asymmetry, stomatal resistance, and chlorophyll content of common oak to monitor a broad range of NH₃ concentrations (four-monthly average of 1.9–29.9 μg m⁻³). No significant effects of ambient NH₃ concentration on the abovementioned leaf characteristics were revealed. Probably, differences in climate, soil characteristics, and concentrations of other air pollutants and/or genotypes confounded the influence of NH₃. Consequently, this study demonstrates the inability of using these morphological, anatomical, and physiological common oak leaf characteristics to monitor ambient NH₃ concentration.
Mostrar más [+] Menos [-]Variable Contributions of Mercury from Groundwater to a First-Order Urban Coastal Plain Stream in New Jersey, USA Texto completo
2013
Barringer, Julia L. | Szabó, Zoltán | Reilly, Pamela A. | Riskin, Melissa L.
Filtered total mercury (FTHg) concentrations in a rapidly urbanizing area ranged from 50 to 250 ng/L in surface waters of the Squankum Branch, a tributary to a major river (Great Egg Harbor River (GEHR)) traversing both urban and forested/wetland areas in the Coastal Plain of New Jersey. An unsewered residential area with Hg-contaminated well water (one of many in the region) is adjacent to the stream’s left bank. Although the region’s groundwater contains total Hg (THg) at background levels of <10 ng/L, water from about 700 domestic wells in urbanized areas completed in the acidic, quartzose unconfined aquifer typically at depths 20 to 30 m below land surface has been found to exceed 2,000 ng/L (the USEPA maximum contaminant level). Within urbanized areas, THg concentrations in shallow groundwater (<20 m below land surface at or near the water table) and the potential for Hg transport were not well known, representing a considerable knowledge gap. Sampling of streamwater in, and groundwater discharge to, the Squankum Branch watershed revealed that concentrations of THg generally were in the range of 1 to 10 ng/L, but narrow plumes (“plumelets”) of shallow groundwater discharging to the stream from the opposing banks contained FTHg at a concentration > 5,000 ng/L (left bank) and nearly 2,000 ng/L (right bank). The Hg content of bankside soils and sediments was high (up to 12 mg/kg) and mostly acid leachable where groundwater with high Hg concentrations discharged, indicating contributions of Hg by both runoff and shallow groundwater. Elevated concentrations of nutrients and chloride in some groundwater plumelets likely indicated inputs from septic-system effluent and (or) fertilizer applications. The Hg probably derives mainly from mercurial pesticide applications to the former agricultural land being urbanized. The study results show that soil disturbance and introduction of anthropogenic substances can mobilize Hg from soils to shallow groundwater and the Hg contamination travels in narrow plumelets to discharge points such as stream tributaries. In the entire GEHR watershed, THg concentrations in groundwater discharging to streams in urban areas tended to be higher than concentrations in water discharging to streams of forested areas, consistent with the results from this small watershed. Other areas with similar quartzose coastal aquifers, land-use history, and hydrogeology may be similarly vulnerable to Hg contamination of shallow groundwater and associated surface water.
Mostrar más [+] Menos [-]Building upon the Conceptual Model for Soil Mercury Flux: Evidence of a Link Between Moisture Evaporation and Hg Evasion Texto completo
2013
Briggs, Christian | Gustin, Mae Sexauer
Parameters known to influence mercury (Hg) release from soils include substrate and air Hg concentration, light, atmospheric oxidants, temperature, and soil moisture. However, for low Hgcontaining soils, the influence of these parameters has been shown to vary across space and time. Here, we expand upon previous work by investigating whether soil-water evaporative loss, which integrates the influence of multiple parameters, could be applied for predicting Hg flux from soil with low Hg concentrations when bare and planted. To investigate our hypothesis, Hg flux was measured from three soil types (<100 ng Hg g-1). When these soils were saturated, flux was suppressed. Soil moisture evaporative stage was used to partition the parameters most important for controlling Hg flux as the soils dried. Classification and regression tree (CART) analyses showed that soil moisture was the most important parameter predicting Hg flux. Results also showed an important predictor for Hg flux was whether actual evaporation (Ea) was equal to potential evaporation (Ep) or Ea < Ep. Depending on evaporative stage, the parameters with the next highest correlation to Hg flux were light, temperature, and soil moisture evaporation rate. The presence of vegetation also influenced flux with lower Hg flux when the plants were transpiring. Results indicate for those developing models that estimate Hg flux from low Hg-containing soils, soil moisture and evaporative stage are useful tools for predicting flux. © Springer Science+Business Media Dordrecht 2013.
Mostrar más [+] Menos [-]Effect of Extraction Variables on the Biodegradable Chelant-Assisted Removal of Toxic Metals from Artificially Contaminated European Reference Soils Texto completo
2013
Begum, Zinnat A. | Rahman, Ismail M. M. | Sawai, Hikaru | Mizutani, Satoshi | Maki, Teruya | Hasegawa, Hiroshi
Development of aminopolycarboxylate chelants (APCs) having enhanced biodegradability is gaining increasing focus to replace the EDTA and its homologs with those used widely for the ex situ treatment of contaminated soils and are potential eco-threats. The paper reports the chelant-assisted extraction of the toxic metals (Cd, Cu, Pb, and Zn) from the metal-spiked European reference soils (Eurosoil 1 and Eurosoil 4) using biodegradable APCs, namely EDDS, GLDA, and HIDS. The effects of chelant-to-metal molar ratio, solution pH, and metal/chelant stability constants were evaluated, and compared with that of EDTA. The selectivity aptitude of the biodegradable chelants towards the toxic metals was assumed from the speciation calculations, and a proportionate correlation was observed at neutral pH. Pre- and post-extractive solid phase distributions of the target metals were defined using the sequential extraction procedure and dissolution of metals from the theoretically immobilized fraction was witnessed. The effect of competing species (Al, Ca, Fe, Mg, and Mn) concentrations was proven to be minimized with an excess of chelant in solution. The highlight of the outcomes is the superior decontamination ability of GLDA, a biodegradable APC, at minimum chelant concentration in solution and applicability at a wide range of pH environments.
Mostrar más [+] Menos [-]The Fate of α-Pinene in Sediments of a Wetland Polluted by Bleached Pulp Mill Effluent: Is It a New Clue on the “Carlos Anwandter” Nature Sanctuary Wetland Case, Valdivia, South of Chile? Texto completo
2013
Palma-Fleming, Hernán | Foitzick, Magay | Palma-Larrea, Ximena | Quiroz-Reyes, Eduardo
The volatile monoterpene alpha-pinene has been measured in sediments of a selected area at "Carlos Anwandter" Nature Sanctuary, a Ramsar protected wetland located at the northwest of Valdivia City, south-central Chile. The ecosystem was seriously damaged by an uncontrolled liquid emission of a pulp mill (CELCO-Arauco) located about 15 km upstream of Rio Cruces during 2004. Exploratory data analysis was applied to analytical data collected from sediment samples, having found alpha-pinene as a reiterative chemical at relatively high concentrations in some specific areas of the wetland. The decrease of the total concentration of alpha-pinene in the area under study is coincident with a point contamination that occurred during 2004 (12,240 ng g(-1)) showing a decay in 2005 (7,890 ng g(-1)) and middle of 2006 (4,060 ng g(-1)). The following years, last 2006, 2008, and 2009, show a relatively constant concentration with a clear tendency toward baseline levels (2,460-2,640 ng g(-1)). Since the decrease of concentrations of alpha-pinene in sediments in the period 2004-2009 shows an opposite trend as compared to the surface area increase of pine and eucalyptus plantation in Region de Los Rios, and not having found potential sources of alpha-pinene by anthropogenic activities other than the pulp mill in the area under study, it may be finally concluded that this compound did not enter the bodies of water from a gradual and natural process; instead there is a base to sustain anthropogenic input. alpha-Pinene in sediments may be a plausible chemical tracer capable of detecting pollution events over time and its impacts in aquatic ecosystems as well as changes in aquatic ecosystems produced by improperly treated pulp mill liquid emissions that use pine and eucalyptus species.
Mostrar más [+] Menos [-]Edge Effects on Soil Acidification in Forests on Sandy Soils Under High Deposition Load Texto completo
2013
Wuyts, Karen | De Schrijver, An | Staelens, Jeroen | Verheyen, Kris
This study investigated how forest soil acidification is affected by edge proximity. We measured pH(KCl) and exchangeable K, Ca, Mg and Al concentrations of the mineral topsoil (0–30 cm) from the exposed edge to the interior (128 m from the edge) of three deciduous and four coniferous forest stands. From the front edge to the interior of the deciduous stands, the pH(KCl) values decreased at 0–5 cm soil depth (from 3.07 to 2.98) but increased at 5–10 cm (from 3.26 to 3.32) and 10–30 cm (from 3.48 to 3.75) depth. In the coniferous stands, pH(KCl) values declined from edge to interior at all soil depths, i.e. from 3.10 to 2.89, from 3.26 to 3.06 and from 3.54 to 3.31 at 0–5, 5–10 and 10–30 cm, respectively. The concentrations of exchangeable cations decreased from edge to interior, with larger differences in the coniferous (of up to 265 %) than in the deciduous stands (up to 99 %). At forest edges, enhanced soil acidification due to higher potentially acidifying deposition could be counteracted in the upper mineral soil by higher base cation throughfall and litterfall, faster litter decomposition, higher soil organic matter content, lower nitrate leaching from the soil and/or lime fertiliser drift. Nonetheless, deeper in the soil of the deciduous stands, these buffer processes seem unable to counteract soil acidification due to potentially acidifying deposition at the edges. Edge effects on soil acidity are important since they can translate into effects on plant communities, soil biota, nitrogen cycling and carbon sequestration.
Mostrar más [+] Menos [-]Interaction of Novel Ionic Liquids with Soils Texto completo
2013
Mrozik, Wojciech | Jungnickel, Christian | Paszkiewicz, Monika | Stepnowski, Piotr
With the constant development of new ionic liquids, the understanding of the chemical fate of these compounds also needs to be updated. To this effect, the interaction of a number of novel ionic liquids with soils was determined. Therefore, three novel headgroups (ammonium, phosphonium, or pyrrolidinium) with single or quaternary substitution were tested on a variety of soils with high-to-low organic matter content and high-to-low cation exchange capacity, thereby trying to capture the full range of possible soil interactions. It was found that the ionic liquids with single butyl alkyl chain interacted more strongly with the soils (especially with a higher cation exchange capacity), at lower concentrations, than the quad-substituted ionic liquids. However, the quad-substituted ionic liquids interacted more strongly at higher concentrations, due to the double-layer formation, and induced stronger dipole interaction with previously sorbed molecules.
Mostrar más [+] Menos [-]Potential Ecological Risk of Heavy Metal Distribution in Cemetery Soils Texto completo
2013
Amuno, S. A.
In this paper, preliminary investigation was conducted to evaluate the potential ecological risk of heavy metals contamination in cemetery soils. Necrosol samples were collected from within and around the vicinity of the largest mass grave in Rwanda and analyzed for heavy metal concentrations using total digestion–inductively coupled plasma mass spectrometry and instrumental neutron activation analysis. Based on the concentrations of As, Cu, Cr, Pb, and Zn, the overall contamination degree (C dₑg) and potential ecological risks status (RI) of the necrosols were determined. The preliminary results revealed that the associated cemetery soils are only contaminated to a low degree. On the other hand, assessment of the potential ecological risk index (RI) revealed that cumulative heavy metal content of the soil do not pose any significant ecological risks. These findings, therefore, suggest that, while cemetery soils may be toxic due to the accumulation of certain heavy metals, their overall ecological risks may be minimal and insignificant.
Mostrar más [+] Menos [-]Fate of Bulk Organic Matter, Nitrogen, and Pharmaceutically Active Compounds in Batch Experiments Simulating Soil Aquifer Treatment (SAT) Using Primary Effluent Texto completo
2013
Abel, Chol D. T. | Sharma, Saroj K. | Maeng, Sung Kyu | Magic-Knezev, Aleksandra | Kennedy, Maria D. | Amy, Gary L.
Reduction of bulk organic matter, nitrogen, and pharmaceutically active compounds from primary effluent during managed aquifer recharge was investigated using laboratory-scale batch reactors. Biologically stable batch reactors were spiked with different concentrations of sodium azide to inhibit biological activity and probe the effect of microbial activity on attenuation of various pollutants of concern. The experimental results obtained revealed that removal of dissolved organic carbon correlated with active microbial biomass. Furthermore, addition of 2 mM of sodium azide affected nitrite-oxidizing bacteria leading to accumulation of nitrite-nitrogen in the reactors while an ammonium-nitrogen reduction of 95.5 % was achieved. Removal efficiencies of the hydrophilic neutral compounds phenacetin, paracetamol, and caffeine were independent of the extent of the active microbial biomass and were >90 % in all reactors, whereas removal of pentoxifylline was dependent on the biological stability of the reactor. However, hydrophobic ionic compounds exhibited removal efficiency >80 % in batch reactors with the highest biological activity as evidenced by high concentration of adenosine triphosphate. © 2013 Springer Science+Business Media Dordrecht.
Mostrar más [+] Menos [-]Performance Evaluation of a Low-Cost Microbial Fuel Cell Using Municipal Wastewater Texto completo
2013
Buitrón, G. (Germán) | Cervantes-Astorga, Carlos
A low-cost microbial fuel cell (MFC) with a brush-shaped anode was constructed with low-cost materials and operated in a fed-batch mode using wastewater as a substrate. The operational performance of the MFC was evaluated considering the organic matter removal, coulombic efficiencies, and current and power densities. Its relative performance to cost was evaluated considering a MFC with platinum/carbon cathode. It was observed that the organic matter removal efficiency was up to 80 % and the coulombic efficiencies varied from 3.5 to 5.7 %. Maximum average voltages and power and current densities of 207 ± 30 mV, 9.2 ± 2.4 mW m-2, and 56.8 ± 14.9 mA m-2 were obtained, respectively. It was observed that the low-cost MFC produced higher power and current densities per dollar when compared to a MFC using platinum-catalyzed electrode. © 2013 Springer Science+Business Media Dordrecht.
Mostrar más [+] Menos [-]