Refinar búsqueda
Resultados 1-3 de 3
Determination of Pear Cultivars (Pyrus communis L.) Based on Colour Change Levels by Using Data Mining
2020
Dilara Gerdan | Abdullah Beyaz | Mustafa Vatandaş
Colour is an essential parameter at product quality control stages, and finally, it is necessary for the consumer marketing decision. It is possible to damage the products during the process from collection to storage. Also, it is a well-known condition, cold environmental conditions protect fruits from deformations negative effects, but most of the time, most of the consumers keep the fruits at room temperature in open packs during the consumption process. Also, this condition affects the product storage time. In this study, it is aimed that to determine the behaviours of the fruits in room temperature and humidity conditions. For this aim the colour change of the damaged pears were determined, in another term, colour change value from red to green and yellow to blue at the damaged pears were determined with lightness values by using image analysis technique and analysed with data mining methods. For this purpose, 100 “Akça” pear and 100 “Deveci” local pear cultivar used for experiments. Fruits were equally damaged by using a pendulum mechanism. The damaged fruits were kept at room temperature. Colour change areas on fruits were evaluated with X-rite Ci60 spectrophotometer, and the hardness of fruits was measured by using a fruit penetrometer. The colour (L, a, b) and ΔE values were analysed for the fruit cultivars. The relationship between fruit hardness and colour change were also demonstrated. The predictions were done supervised machine learning algorithms (Decision Tree and Neural Networks with Meta-Learning Techniques; Majority Voting and Random Forest) by using KNIME Analytics software. The classifier performance (accuracy, error, F-Measure, Cohen's Kappa, recall, precision, true positive (TP), false positive (FP), true negative (TN), false negative (FN) values were given at the conclusion section of the research. The best prediction were found at the Majority Voting method (MAVL) 98.458 % success given with 70% partitioning.
Mostrar más [+] Menos [-]Classification of Some Fruits using Image Processing and Machine Learning
2021
Dilara Gerdan Koç | Mustafa Vatandaş
In this study, an image processing algorithm and classification unit were developed to classify the fruits according to their size and color characteristics. For this purpose, a total of 300 fruits (50 fruit samples from each of the Starkrimson Delicious and Golden Delicious apple varieties, Washington Navel and Valencia Midknight orange varieties, Ekmek and Eşme quince varieties) were used in the experiments. The size and color values measured with a caliper and a spectrophotometer were entered in the developed image processing algorithm to determine the success rates of classifying the fruits. The integration of image processing algorithm with the classification unit classified 88%, 100%, 96%, 82%, 86%, respectively. On the other hand, the size and color values read in fruits with the image processing algorithm were evaluated using predictive techniques used in data mining. For this purpose, K Nearest Neighbor (KNN), Decision Tree (DT), Naive Bayes classification and Multilayer Perceptron Neural Network (MLP) algorithms were used. Algorithms were run with 10-fold cross validation method. In the training of artificial classifiers, the success was 93.6% for KNN, 90.3% for DT, 88.3% for Naive Bayes, 92.6% for MLP and 94.3% for RF.
Mostrar más [+] Menos [-]Estimation of Canopy Area of Fruit Trees Using Light Unmanned Aerial Vehicle (UAV) and Image Processing Methods
2020
Adil Koray Yıldız | Hakan Keles | Servet Aras
Some vegetative properties measured in fruit trees are important indicators in examining of plant growth calculation, estimation of leaf area index in evapotranspiration, fertilizer requirement etc. These measurements reflect the effects of the cultivation treatments in many areas of commercial growing and scientific studies. One of the most important measurements is the status of the canopy development. Canopy width, area and volume can be measured with some calculations. However, more technological equipment may be needed to reduce work and labor, and to make the results more precise and clearer. Recently, unmanned aerial vehicles, which have become widespread, have a wide potential for use in agriculture. By using image processing methods, it is possible to make more objective and high accuracy evaluations much faster. In this study, the images of the apple trees (Malus domestica Borkh) cultivar Golden grafted onto MM106 rootstock, were taken by light unmanned aerial vehicle to calculate the canopy area and then these images were analyzed using image processing methods for calculating canopy areas. Both circular and elliptical calculation methods were used. The area calculations with image processing methods were compared with the areas obtained manually. Comparisons were made by regression analysis. For the most successful method R value was 0.9662 for elliptic area and 0.9346 for circular area which was calculated by image processing. The results demonstrated that the image processing can be an alternative method to determine the canopy area according to accuracy ratios.
Mostrar más [+] Menos [-]